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Preface

In the first paragraph of the preface to the first edition in 1980 I wrote:

It is not easy, for the newcomer to the subject, to get into the current finite element
literature. The purpose of this book is to offer an introductory approach, after which
the well-known texts should be easily accessible.

Writing now, in 2010, I feel that this is still largely the case. However, while the
1980 text was probably the only introductory text at that time, it is not the case
now. I refer the interested reader to the references.

In this second edition, I have maintained the general ethos of the first.
It is primarily a text for mathematicians, scientists and engineers who have
no previous experience of finite elements. It has been written as an under-
graduate text but will also be useful to postgraduates. It is also suitable for
anybody already using large finite element or CAD/CAM packages and who
would like to understand a little more of what is going on. The main aim is
to provide an introduction to the finite element solution of problems posed as
partial differential equations. It is self-contained in that it requires no previous
knowledge of the subject. Familiarity with the mathematics normally covered by
the end of the second year of undergraduate courses in mathematics, physical
science or engineering is all that is assumed. In particular, matrix algebra
and vector calculus are used extensively throughout; the necessary theorems from
vector calculus are collected together in Appendix B.

The reader familiar with the first edition will notice some significant changes.
I now present the method as a numerical technique for the solution of partial
differential equations, comparable with the finite difference method. This is
in contrast to the first edition, in which the technique was developed as an
extension of the ideas of structural analysis. The only thing that remains of this
approach is the terminology, for example ‘stiffness matrix’, since this is still in
common parlance. The reader familiar with the first edition will notice a change
in notation which reflects the move away from the structural background. There
is also a change of order of chapters: the introduction to finite elements is now
via weighted residual methods, variational methods being delayed until later.
I have taken the opportunity to introduce a completely new chapter on boundary
element methods. At the time of the first edition, such methods were in their
infancy, but now they have reached such a stage of development that it is natural
to include them; this chapter is by no means exhaustive and is very much an
introduction. I have also included a brief chapter on computational aspects. This
is also an introduction; the topic is far too large to treat in any depth. Again
the interested reader can follow up the references. In the first edition, many of
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the examples and exercises were based on problems in journal papers of around
that time. I have kept the original references in this second edition.

In Chapter 1, I have written an updated historical introduction and included
many new references. Chapter 2 provides a background in weighted residual
and variational methods. Chapter 3 describes the finite element method for
Poisson’s equation, concentrating on linear elements. Higher-order elements and
the isoparametric concept are introduced in Chapter 4.

Chapter 5 sets the finite element method in a variational context and intro-
duces time-dependent and non-linear problems. Chapter 6 is almost identical
with Chapter 7 of the first edition, the only change being the notation. Chapter
7 is the new chapter on the boundary element method, and Chapter 8, the
final chapter, addresses the computational aspects. I have also expanded the
appendices by including, in Appendix A, a brief description of some of the
partial differential equation models in the physical sciences which are amenable
to solution by the finite element method.

I have not changed the general approach of the first edition. At the end of
each chapter is a set of exercises with detailed solutions. They serve two purposes:
(i) to give the reader the opportunity to practice the techniques, and (ii) to
develop the theory a little further where this does not require any new concepts;
for example, the finite element solution of eigenvalue problems is considered in
Exercise 3.24. Also, some of the basic theory of Chapter 6 is left to the exercises.
Consequently, certain results of importance are to be found in the exercises and
their solutions.

An important development over the past thirty years has been the wide
availability of computational aids such as spreadsheets and computer algebra
packages. In this edition, I have included examples of how a spreadsheet could
be used to develop more sophisticated solutions compared with the ‘hand’
calculations in the first edition. Obviously, I would encourage readers to use
whichever packages they have on their own personal computers.

Well, this second edition has been a long time coming; I’ve been working
on it for quite some time. It has been confined to very concentrated two-week
spells over the Easter periods for the past six years, these periods being spent
with Margaret and Arthur, Les Meuniers, at their home in the Lot, south-west
France. The environment there is ideal for the sort of focused work needed to
produce this second edition. I am grateful for their friendship and, of course, their
hospitality. The production of this edition would have been impossible without
the help of Dr Diane Crann, my wife. I am very grateful for her expertise in
turning my sometimes illegible handwritten script into OUP LATEX house style.

A.J.D.
Lacombrade
Sabadel Latronquière
Lot
August 2010
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1 Historical introduction

The fundamental idea of the finite element method is the replacement of contin-
uous functions by piecewise appproximations, usually polynomials.

Although the finite element method itself is relatively new, its development
and success expanding with the arrival and rapid growth of the digital computer,
the idea of piecewise approximation is far from new. Indeed, the early geometers
used ‘finite elements’ to determine an approximate value of π. They did this
by bounding a quadrant of a circle with inscribed and circumscribed polygons,
the straight-line segments being the finite element approximations to an arc of
the circle. In this way, they were able to obtain extremely accurate estimates.
Upper and lower bounds were obtained, and by taking an increasing number of
elements, monotonic convergence to the exact solution would be expected. These
phenomena are also possible in modern applications of the finite element method.
One remark regarding ancient finite elements: Archimedes used these ideas to
determine areas of plane figures and volumes of solids, although of course he did
not have a precise concept of a limiting procedure. Indeed, it was only this fact
which prevented him from discovering the integral calculus some two thousand
years before Newton and Leibniz. The interesting point here is that whilst many
problems of applied mathematics are posed in terms of differential equations,
the finite element solution of such equations uses ideas which are in fact much
older than those used to set up the equations initially.

The modern use of finite elements really started in the field of structural
engineering. Probably the first attempts were by Hrennikoff (1941) and McHenry
(1943), who developed analogies between actual discrete elements, for example
bars and beams, and the corresponding portions of a continuous solid. These
methods belonged to a class of semi-analytic techniques which were used in the
1940s for aircraft structural design. Matrix methods for the solution of such
problems were developed at this time, and it is interesting to note that the
work of Argyris (1955), in an engineering context, introduced a minimization
process which is also the basis of the mathematical underpinning of the finite
element method. With the development of high-speed, jet-powered aircraft,
these semi-analytic methods were soon found to be inadequate and the quest
began for a more reliable approach. A direct approach, based on the principle
of virtual work, was given by Argyris (1955), and in a series of papers he
and his colleagues developed this work to solve very complex problems using
computational techniques (Argyris and Kelsey 1960). At about the same time,
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Turner et al. (1956) presented the element stiffness matrix, based on displacement
assumptions, for a triangular element, together with the direct stiffness method
for assembling the elements. The term ‘finite element’ was introduced by Clough
(1960) in a paper describing applications in plane elasticity.

The engineers had put the finite element method on the map as a practical
technique for solving their elasticity problems, and although a rigorous math-
ematical basis had not been developed, the next few years saw an expansion
of the method to solve a large variety of structural problems. Solutions of
three-dimensional problems required only simple extensions to the basic two-
dimensional theory (Argyris 1964). The obvious problem to consider after plane
problems was that of plate bending; here, researchers found their first real
difficulties and the early attempts were not altogether successful. It was not
until some time later that the problems of compatibility were resolved (Bazely
et al. 1965).

One area of application of plate elements was that of modelling thin shells,
and some success was achieved (Clough and Johnson 1968). However, the repre-
sentation of a thin shell by a polyhedral surface of flat plates can cause serious
problems in the presence of pronounced bending, and it soon became clear that
shell elements themselves were necessary.

Plate elements presented difficulties to researchers, but these were small
compared with the problems associated with shell elements. The first actual shell
elements developed were axisymmetric elements (Grafton and Strome 1963), and
these were followed by a whole sequence of cylindrical and other shell elements
(Gallagher 1969). Such elements are still being developed, and it is probably fair
to say that this is the only area of linear analysis that still has potential for
further work in the context of finite elements.

The workers in the early 1960s soon turned their attention towards the
solution of non-linear problems. Turner et al. (1960) showed how to use an
incremental technique to solve geometrically non-linear problems, i.e. problems in
which the strains remain small but displacements are large. Stability analysis also
comes into this category and was discussed by Martin (1965). Plasticity problems,
involving non-linear material behaviour, were modelled at this time (Gallagher
et al. 1962) and the method was also applied to the solution of problems in
viscoelasticity (Zienkiewicz et al. 1968).

Besides the static analysis described above, dynamic problems were also
being tackled, and Archer (1963) introduced the concept of the consistent mass
matrix. Both vibration problems (Zienkiewicz et al. 1966) and transient problems
(Koenig and Davids 1969) were considered. Thus the period from its conception
in the early 1950s to the late 1960s saw the method being applied extensively by
the engineering community. With the successes of these practical applications in
the structural field, it was open for engineers in other disciplines (Silvester and
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Ferrari 1983) to get hold of the finite element method. An obvious candidate was
fluid mechanics.

Potential flow (Doctors 1970) and Stokes flow were easy to develop
(Atkinson et al. 1970), and it wasn’t long before the appearance of a textbook on
the finite element method in viscous flow problems (Connor and Brebbia 1976).
However, the more general form of the Navier–Stokes equations was much more
difficult, the convection terms yield non-self-adjoint operators and, consequently,
there are no obvious variational principles. The method was extended further
when it was seen to fit in with the method of weighted residuals (Szabó and
Lee 1969). This then allowed the solution of such problems posed as partial
differential equation boundary-value problems. The method had been well known
for some time; Crandall (1956) had used the term to classify a variety of
numerical approximation techniques, although Galerkin (1915) was the first to
use the method. Probably the first finite element solution of the Navier–Stokes
equations was given by Taylor and Hood (1973). However, problems that had
been encountered using finite differences (Spalding 1972) were apparent in the
finite element approach, and the so-called up-wind approach was brought into
a finite element context (Zienkiewicz, Heinrich et al. 1977). Also, the so-called
finite-volume approach was developed (Jameson and Mavriplis 1986), which has
the important physical property that certain conservation laws are maintained.
The scene was now set for rapid developments in fluid mechanics and other areas
such as heat and mass transfer (Mohr 1992), for diffusion–convection problems,
and for other coupled problems (Elliott and Larsson 1995).

As far as this historical introduction is concerned, this is where we shall
leave the contributions from the engineering community. There are excellent
accounts of applications from the mid 1970s onwards in the texts by Zienkiewicz
and Taylor (2000a,b). Let us return to the early days of the developments: at
the same time as the engineers were pushing forward with the practical aspects
of the method, similar work was being carried out by applied mathematicians,
each group apparently unaware of the work of the other. Courant (1943) gave
a solution to the torsion problem, using piecewise linear approximations over
a triangular mesh, formulating the problem from the principle of minimum
potential energy. Zienkiewicz (1995) noted that Courant had already developed
some of the ideas in the 1920s without taking them further. Similar papers
followed by Polya (1952) and Weinberger (1956). Greenstadt (1959) presented
the idea of considering a continuous region as an assembly of several discrete
parts and making assumptions about the variables in each region, variational
principles being used to find values for these variables. We note here also that
the work of Schoenberg (1946) was very much in the spirit of finite elements, since
the piecewise polynomial approximation led to the development of the theory of
splines.
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Similar work was being carried out in the physics community. In the late
1940s, Prager and Synge (1947) developed a geometric approach to a variational
principle in elasticity which led to the so-called hypercircle method, which is also
in the spirit of the finite element method. The method is discussed in detail in
the book by Synge (1957). A three-dimensional problem in electrostatics was
solved, using linear tetrahedral elements, by McMahon (1953).

It was some time before Birkhoff et al. (1968) and Zlamal (1968) published
a convergence proof and error bounds in the applied mathematics literature.
However, the first convergence proof in the engineering literature had already
been given by Melosh (1963), who used the principle of minimum potential
energy, and this work was extended by Jones (1964) using Reissner’s variational
principle. Once it was realized that the method could be interpreted in terms of
variational methods, the mathematicians and engineers were brought together
and many extensions of the method to new areas soon followed. In particular,
it was realized that the concept of piecewise polynomial approximation offered
a simple and efficient procedure for the application of the classical Rayleigh–
Ritz method. The principles could be clearly seen in the much earlier work
of Lord Rayleigh (Strutt 1870) and Ritz (1909). From a physical point of
view, it meant that problems outside the structural area could be solved using
standard structural packages by associating suitable meanings to the terms in the
corresponding variational principles. This was just what was done by Zienkiewicz
and Cheung (1965) in the application of the finite element method to the solution
of Poisson’s equation and by Doctors (1970) in the application to potential flow.
Similarly, transient heat conduction problems were considered by Wilson and
Nickell (1966).

The mathematical basis of the method then started in earnest, and it is
well beyond the scope of this text to do more than indicate where the interested
reader may wish to start. Error estimation is clearly an important aspect of any
numerical approximation, and the first developments were by Babuška (1971,
1973) and Babuška and Rheinboldt (1978, 1979), who showed how to estimate
errors and how convergence was ensured by suitable mesh refinement. The basis
was then set for the possibility of adaptive mesh refinement, in which meshes
are automatically refined in response to knowledge of computed solutions. Mesh
generation and adaption is an area in which much work is still needed; for a
recent account, see Zienkiewicz et al. (2005). Ciarlet (1978) provided the first of
what would usually be described as a ‘mathematical’ account of the finite element
method, and the text has since been extended and updated by Ciarlet and Lions
(1991). The reader interested in becoming familiar with current mathematical
approaches to the method should consult Brenner and Scott (1994) or the very
readable text by Axelsson and Barker (2001).

At about the same time as Courant was working on variational meth-
ods for elliptic problems, Trefftz (1926) developed a technique in which a
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partial differential equation, defined over a region, becomes an integral equation
over the boundary of that region. The immediate advantage is in the reduction
of the dimension of the problem. Such integral techniques have been known since
the late nineteenth century; the theorems of Green (1828) are the bedrock of the
solution of potential problems, the term potential first being coined by Green in
his seminal paper. These techniques have been the basis of the formulation of
potential theory and elasticity by, amongst others, Fredholm (1903) and Kellog
(1929).

It was with developments in computing and numerical procedures that the
technique became attractive to physicists and engineers in the 1960s (Hess and
Smith 1964), and the ideas developed at that time were collected together in
a single text (Jaswon and Symm 1977). A very good overview of the early
development of boundary elements was given by Becker (1992). It is interesting
to note here the work of Rizzo (1967), who applied the ideas for potential
problems to use boundary elements to solve problems in elasticity, in contrast
with Zienkiewicz and Cheung (1965), who used codes for structural analysis to
obtain the finite element solution of potential problems.

The first boundary element textbook was written by Brebbia (1978), and
since then there has been a variety of similar texts, each with the intention
of making the technique accessible to those who would wish to develop their
own code. See, for example, Gipson (1987), Becker (1992) and Paŕıs and Cañas
(1997). The text by Hall (1993) is particularly useful to those for whom boundary
elements are a completely new idea. Finally, the two-volume set by Aliabadi
(2002) and Wrobel (2002) provides a similar state-of-the-art work on boundary
elements, as does the three-volume set by Zienkiewicz and Taylor (2000a,b) and
Zienkiewicz et al. (2005) for finite elements.

There is always the question ‘Which is better, the finite element method or
the boundary element method?’ See Chapter 8, where we discuss the merits of
each case. It is usually accepted that boundary elements are more appropriate
for infinite regions. However, in a recent text, Wolf and Song (1997) set out
a finite element procedure to cope with unbounded regions. Zienkiewicz, Kelly
et al. (1977) proposed a coupling of the two methods to get the best out of each:
finite elements in regions of material non-linearity and boundary elements for
unbounded regions.

Recently, further developments in so-called mesh-free methods have been
proposed (Goldberg and Chen 1997, Liu 2003); included is the method of
fundamental solutions (Goldberg and Chen 1999), which has its origins in the
work on potential problems by Kupradze (1965).

Currently, the terms ‘finite element method’, ‘boundary element method’,
‘mesh-free method’ etc. are used, and they are all really variations on a more
general weighted residual theme. Zienkiewicz (1995) suggested that a more
appropriate generic name would be the generalized Galerkin method (Fletcher
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1984). For further details of background and history, see the following: for finite
elements, Zienkiewicz (1995) and Fish and Belytschko (2007), who gave a very
good account of the commercial development of finite elements; and for boundary
elements, see Becker (1992) and Cheng and Cheng (2005). There is now a very
large body of work in the finite element method field; a quick Internet search on
the words ‘finite element’ and ‘boundary element’ yielded more than 20 million
pages. The website run at the University of Ohio gives details of more than 600
finite element books.

The finite element method has now reached a very sophisticated level
of development, so much so that it is applied routinely in a wide variety of
application areas. We mention here just two of them. (i) Biomedical engineer-
ing: Zienkiewicz (1977) performed stress analysis calculations for human femur
transplants. Recently, Phillips (2009) has extended these ideas significantly and,
instead of modelling just the bone, he has made a complete finite element analysis
of the bone and the associated muscles. (ii) Financial engineering: in the early
days of the development of finite elements, the study of financial systems would
have seemed to have been outside the scope of the method. However, Black–
Scholes models (Wilmott et al. 1995), describing a variety of option-pricing
schemes, have been set in a finite element context by, amongst others, Topper
(2005) and Tao Jiang et al. (2009).

For a general guide to current research from both an engineering and
a mathematical perspective, the reader is referred to the sets of conference
proceedings MAFELAP (From 1973 to 2010), edited by Whiteman, and BEM
(From 1979 to 2010), edited by Brebbia.

Finally, if there is one person whose work forms a basis for both the finite
element method and the boundary element method then it is George Green.
Green’s theorem underpins both methods, and, of course, fundamental solutions
are themselves Green’s functions.



2 Weighted residual and variational
methods

2.1 Classification of differential operators

The quantities of interest in many areas of applied mathematics are often to
be found as the solution of certain partial differential equations, together with
prescribed boundary and/or initial conditions.

The nature of the solution of a partial differential equation depends on the
form that the equation takes. All linear, and quasi-linear, second-order equations
are classified as elliptic, hyperbolic or parabolic. In each of these categories there
are equations which model certain physical phenomena. The classification is
determined by the coefficients of the highest partial derivatives which occur in
the equation.

In this chapter, we shall consider functions which depend on two indepen-
dent variables only, so that the resulting algebra does not obscure the underlying
ideas.

Consider the second-order partial differential equation

(2.1) Lu = f,

where L is the operator defined by

Lu ≡ a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂2y2
+ F

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
.

a, b and c are, in general, functions of x and y; they may also depend on u itself
and its derivatives, in which case the equation is non-linear. Non-linear equations
are, in general, far more difficult to deal with than linear equations, and they will
not be discussed here. They will, however, be considered briefly in Section 5.3.

Equation (2.1) is said to be:

• elliptic if b2 < 4ac;

• hyperbolic if b2 > 4ac;

• parabolic if b2 = 4ac.

Unlike ordinary differential equations, it is not usually profitable to investigate
the solution of a partial differential equation in isolation from the associated
boundary and/or initial conditions. Indeed, it will always be an equation together
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with prescribed conditions which forms a mathematical model of a particular
situation.

In general, elliptic equations are associated with steady-state phenomena
and require a knowledge of values of the unknown function, or its derivative, on
the boundary of the region of interest. Thus Poisson’s equation,

−∇2u =
ρ

ε
,

gives a model which describes the variation of the electrostatic potential in a
medium with permittivity ε and in which there is a charge distribution ρ per
unit volume. In the case ρ ≡ 0 we have Laplace’s equation,

∇2u = 0.

In order that the solution is unique, it is necessary to know the potential or
charge distribution on the surrounding boundary. This is a pure boundary-value
problem.

Hyperbolic equations are, in general, associated with propagation problems
and require the specification of certain initial values and/or possible boundary
values as well.

Thus, the wave equation,

∂2u

∂x2
=

1
c2

∂2u

∂t2
,

gives the small transverse displacement, u(x, t), of a uniform vibrating string;
waves are propagated along the string with speed c. In such problems it is usually
required to know the displacement, or its derivative, at the ends, together with
the initial displacement and velocity distribution. This is an initial boundary-
value problem.

Finally, parabolic equations model problems in which the quantity of interest
varies slowly in comparison with the random motions which produce these
variations. As is the case with hyperbolic equations, they are associated with
initial-value problems. Thus the heat equation, or diffusion equation,

∂2u

∂x2
=

1
α

∂u

∂t
,

describes the temperature variation, u(x, t), in a thin rod which has a uniform
thermal diffusivity α. The temperature changes in the material are produced by
the motion of individual molecules and occur slowly in comparison with these
molecular motions. Either the temperature or its derivative is usually given at
the ends of the rod, together with an initial temperature distribution. This again
is an initial boundary-value problem. The three equations occur in many areas
of applied mathematics, engineering and science. In Appendix A we provide a
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table of application areas, so that the interested reader may be able to associate
the equations with appropriate applications.

In this chapter we shall consider the approximate methods on which our
finite element techniques, described in Chapters 3, 4, 5 and 6, will be based. It
is in the area of elliptic partial differential equations that finite element methods
have been used most extensively, since the differential operators involved belong
to the important class of positive definite operators. However, finite elements
are widely used for the solution of hyperbolic and parabolic equations, and all
three categories will be discussed; elliptic equations in Chapters 3 and 4, and
hyperbolic and parabolic equations in Chapter 5.

2.2 Self-adjoint positive definite operators

Suppose that the function u satisfies eqn (2.1) in a two-dimensional region D

bounded by a closed curve C, i.e.

Lu = f,

where f(x, y) is a given function of position. Suppose also that u satisfies certain
given homogeneous conditions on the boundary C. Usually these conditions are
of the following types:

Dirichlet boundary condition: u = 0;(2.2)

Neumann condition:
∂u

∂n
= 0;(2.3)

Robin condition:
∂u

∂n
+ σ(s)u = 0.(2.4)

Here s is the arc length measured along C from some fixed point on C, and ∂/∂n

represents differentiation along the outward normal to the boundary. Note that
the Neumann condition may be obtained from the Robin condition by setting
σ ≡ 0.

A problem is said to be properly posed, in the sense of Hadamard (1923), if
and only if the following conditions hold:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.

The third condition is equivalent to saying that small changes in the data lead
to small changes in the solution (Renardy and Rogers 1993). If at least one of
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these conditions does not hold, then the problem is said to be poorly posed or
ill-posed.

For an elliptic operator L, the problem is properly posed only when one of
these conditions holds at each point on the boundary.

The numerical methods which we shall discuss involve processes which
change our partial differential equation into a system of linear algebraic equa-
tions. Two important properties of L lead to particularly useful properties of the
system matrix.

1. The operator L is said to be self-adjoint if and only if the expression∫ ∫
D

vLu dx dy −
∫ ∫

D

uLv dx dy

is a function only of u, v and their derivatives evaluated on the boundary.
In particular, for homogeneous boundary conditions, L is self-adjoint if and
only if ∫ ∫

D

vLu dx dy =
∫ ∫

D

uLv dx dy.

2. The operator L is said to be positive definite if and only if, for all functions u,∫ ∫
D

uLu dx dy ≥ 0,

equality occurring if and only if u ≡ 0.

In both definitions, it is assumed that u and v satisfy suitable differentiability
conditions in order that the operations exist.

Example 2.1 Suppose that L = −∇2, so that eqn (2.1) becomes Poisson’s equa-
tion; then∫ ∫

D

vLu dx dy −
∫ ∫

D

uLv dx dy =
∫ ∫

D

u ∇2v dx dy −
∫ ∫

D

v ∇2u dx dy

=
∮

C

(
u

∂v

∂n
− v

∂u

∂n

)
ds

by virtue of the second form of Green’s theorem. Thus the operator −∇2 is
self-adjoint.

Also, v ∇2u = div (v gradu) − gradu · grad v, and thus∫ ∫
D

u
(−∇2u

)
dx dy = −

∫ ∫
D

div (u gradu) dx dy +
∫ ∫

D

| gradu |2 dx dy
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= −
∮

C

u
∂u

∂n
ds +

∫ ∫
D

| gradu |2 dx dy,

using the divergence theorem; see Appendix B.
Thus if u satisfies either of the boundary conditions (2.2) or (2.3) it follows

that −∇2 is positive definite. For the Robin boundary condition (2.4), the
boundary integral becomes ∮

C

σu2 ds

and hence −∇2 is positive definite provided that σ > 0.

Example 2.2 Suppose now that Lu = −div (k gradu), where k (x, y) is a scalar
function of position, and suppose also that the problem is isotropic. Anisotropy
can be taken into account by replacing the scalar k by a tensor represented by

(2.5) κ =
[

κxx κxy

κyx κyy

]
;

see eqn (2.68).

∫ ∫
D

vLu dx dy −
∫ ∫

D

uLv dx dy

=
∫ ∫

D

u div (k grad v) dx dy −
∫ ∫

D

v div (k gradu) dx dy

=
∫ ∫

D

{div (uk grad v) − gradu · k grad v} dx dy

−
∫ ∫

D

{div (vk gradu) − grad v · k gradu} dx dy

=
∮

C

k

(
u

∂v

∂u
− v

∂u

∂n

)
ds

using the divergence theorem.
Hence L is self-adjoint. Also,∫ ∫

D

uLu dx dy = −
∮

C

ku
∂u

∂n
ds +

∫ ∫
k | gradu |2 dx dy.

If u satisfies eqn (2.2) or eqn (2.3), then the boundary integral vanishes and L
is positive definite if k > 0. If, however, u satisfies eqn (2.4), then the boundary
integral is negative if σ > 0, so that again L is positive definite if k > 0.
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When one is modelling physical phenomena, an important property that
the model must possess is that it has a unique solution. If the physical system
is modelled by eqn (2.1) and L is linear and positive definite, then the solution
is unique. The proof is as follows.

Suppose that u1 and u2 are two solutions of eqn (2.1). Let

v = u1 − u2,

so that

Lv = Lu1 − Lu2 = 0.

Hence ∫ ∫
D

vLv dx dy = 0.

Now L is positive definite, so that v ≡ 0. Thus u1 = u2 and the solution is unique.

2.3 Weighted residual methods

Consider the boundary-value problem

(2.6) Lu = f in D

subject to the non-homogeneous Dirichlet boundary condition

u = g(s)

on some part C1 of the boundary, and the non-homogeneous Robin condition

∂u

∂n
+ σ(s)u = h(s)

on the remainder C2.
An approximate solution ũ will not, in general, satisfy eqn (2.6) exactly, and

associated with such an approximate solution is the residual defined by

r(ũ) = Lũ − f.

If the exact solution is u0, then

r(u0) ≡ 0.
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We choose a set of basis functions {vi : i = 0, . . . , n}, and make an approx-
imation of the following form:

(2.7) ũn =
n∑

i=0

civi.

In the weighted residual method, the unknown parameters ci are chosen to
minimize the residual r(ũ) in some sense. Different methods of minimizing the
residual yield different approximate solutions.

All the methods we shall consider result in a system of equations of the form

Ac = h

for the unknowns ci. The different methods yield different matrices A and h.
The methods presented in this section are illustrated in Examples 2.3–2.6,

in which all calculations are done by hand. A comparison of these solutions with
the exact solution is shown in Table 2.1 and Fig. 2.1. We shall consider the simple
two-point boundary-value problem

(2.8)
−u′′ = x2, 0 < x < 1,

u(0) = u(1) = 0.

This problem has the exact solution

u0(x) =
x

12
(
1 − x3

)
.

Example 2.3 Firstly, consider the collocation method, in which the trial function
(2.7) is chosen to satisfy the boundary conditions.

N.B. We choose homogeneous Dirichlet boundary conditions. One-
dimensional problems with non-homogeneous conditions of the form u(0) = a,

u(1) = b may be transformed to a problem with homogeneous conditions by the
change of dependent variable w(x) = u(x) − ((1 − x)a + xb).

The parameters ci are then found by forcing ũn to satisfy the differential
equation at a given set of n points, i.e. at these points the residual vanishes.

Table 2.1 Approximate solutions (×102) to the boundary-value problem
of Examples 2.3–2.6

x 0 0.2 0.4 0.6 0.8 1

Collocation 0 1.422 2.933 3.733 3.022 0
Overdetermined collocation 0 1.533 3.100 3.900 3.133 0
Least squares 0 1.867 3.600 4.400 3.467 0
Galerkin 0 1.600 3.200 4.000 3.200 0
Exact 0 1.653 3.120 3.920 3.253 0
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Fig. 2.1 Comparison of the errors in the four approximate solutions in Examples 2.3–2.6.

The residual is

r (ũn) = − (
ũ′′

n + x2
)
.

A cubic approximation which satisfies the boundary conditions is

ũ1(x) = x(1 − x)(c0 + c1x),

so that

r (ũ1) = 2c0 + (6x − 2)c1 − x2.

If x = 1
3 and x = 2

3 are chosen as collocation points, then

r

(
ũ1

(
1
3

))
= r

(
ũ1

(
2
3

))
= 0,

which leads to the equations

[
2 0
2 2

] [
c0

c1

]
=

[
1
9

4
9

]
,

giving c0 = 1
18 , c1 = 1

6 .
Thus the approximate solution is

ũ1(x) =
1
18

x(1 − x)(1 + 3x).
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This example illustrates the conventional use of the collocation method. The
idea may also be used with collocation at m points, where m > n, so that an
overdetermined system of equations is obtained for the unknown parameters.
These equations may then be solved by the method of least squares.

Example 2.4 Suppose, in Example 2.3, the same cubic approximation is used
but the chosen collocation points are x = 1

4 , x = 1
2 and x = 3

4 . Then, forcing the
residual to vanish at the collocation points yields the system

⎡
⎣2 − 1

2

2 1
2 5

2

⎤
⎦[

c0

c1

]
=

⎡
⎢⎣

1
16

1
4

9
16

⎤
⎥⎦.

This is an overdetermined set of algebraic equations of the form

(2.9) Ac = h.

The usual method of least squares yields the following square set of equations:

AT Ac = AT h.

Thus eqn (2.9) becomes

[
12 6
6 5

2

] [
c0

c1

]
=

[
7
4

13
8

]
,

giving c0 = 1
16 , c1 = 1

6 .
Thus the approximate solution is

ũ1(x) =
1
48

x(1 − x)(3 + 8x).

Example 2.5 The second approach is the method of least squares applied
directly to the residual. Again the trial functions are chosen to satisfy the bound-
ary conditions, and the residual is minimized in the sense that the parameters
are chosen so that

I [ũ] =
∫ ∫

D

r(ũ)2 dx dy

is a minimum.
Thus

∂I

∂ci
= 0, i = 0, . . . , n.
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Now

I (c0, . . . , cn) =
∫ ∫

D

{
L

(∑
cjvj

)
− f

}2

dx dy.

If L is a linear operator, then

∂I

∂ci
= 2

∫ ∫
D

{
L

(∑
cjvj

)
Lvi − fLvi

}
dx dy,

so that

(2.10)
n∑

j=0

cj

∫ ∫
D

(LviLvj) dx dy =
∫ ∫

D

fLvi dx dy, i = 0, . . . , n.

Consider the problem of Example 2.3 with trial function

ũ(x) = x(1 − x)(c0 + c1x).

Here v0 = x(1 − x), v1 = x2(1 − x); thus Lv0 = 2, Lv1 = 6x − 2.
Therefore ∫ 1

0

(Lv0)
2
dx = 4,

∫ 1

0

(Lv1)
2
dx = 4,

∫ 1

0

Lv0Lv1 dx =
∫ 1

0

Lv1Lv0 dx = 2,

∫ 1

0

x2Lv0 dx =
2
3
,

∫ 1

0

x2Lv1 dx =
5
6
.

Equation (2.10) then gives

[
4 2
2 4

] [
c0

c1

]
=

[
2
3

5
6

]
,

giving c0 = 1
12 , c1 = 1

6 .
The approximate solution is then

ũ1(x) =
1
12

x(1 − x)(1 + 2x).

Example 2.6 The final method to be considered is the Galerkin method. In this
method the integral of the residual, weighted by the basis functions, is set to
zero, i.e. ∫ ∫

D

r(ũ)vi dx dy = 0, i = 0, . . . , n.



Weighted residual and variational methods 17

This yields the following n + 1 equations for the n + 1 parameters ci:∫ ∫
D

(Lũ − f) vi dx dy = 0, i = 0, . . . , n,

i.e.

(2.11)
n∑

j=0

cj

∫ ∫
D

viLvj dx dy =
∫ ∫

D

fvi dx dy, i = 0, . . . , n.

In the special case L = −∇2, these equations are of the form

Ac = h,

where

Aij = −
∫ ∫

D

vi ∇2vj dx dy

and

hi =
∫ ∫

D

vif dx dy.

Again, consider the problem (2.8) with the basis functions v0 and v1 of
Example 2.5. Then ∫ 1

0

v0Lv0 dx =
1
3
,

∫ 1

0

v1Lv1 dx =
2
15

,

∫ 1

0

v0Lv1 dx =
1
6
,

∫ 1

0

v1Lv0 dx =
1
6
,

∫ 1

0

x2Lv0 dx =
1
20

,

∫ 1

0

x2Lv1 dx =
1
30

.

Equation (2.11) thus gives [
1
3

1
6

1
6

2
15

][
c0

c1

]
=

[
1
20

1
30

]
,

giving c0 = 1
15 , c1 = 1

6 .
Thus the approximate solution is

ũ1(x) =
1
30

x(1 − x)(2 + 5x).

For this particular problem, it is difficult to decide which is the ‘best’
method. It would appear that the Galerkin and the overdetermined collocation
methods give the best distribution of error; but notice that there are regions
in which the least squares method gives the best results, although, overall, it is



18 The Finite Element Method

probably the least accurate. It is interesting to note that Crandall (1956) came to
similar conclusions for an initial-value problem involving a first-order equation;
in the case presented there, the least squares method turns out to be the ‘best’
higher-order polynomial approximation, ũn. The right-hand side of problem (2.8)
is quadratic and it is not difficult to see that the exact solution is quartic, so
that approximations ũn with n ≥ 4 will necessarily recover the exact solution.
We make a small change and consider the problem

−u′′ = ex, 0 < x < 1,

u(0) = u(1) = 0.

This problem has the exact solution

u0(x) = 1 + (e − 1)x − ex,

and no polynomials will recover this exactly.
The approximations used in Examples 2.3–2.6 have all been sufficiently

‘simple’ to be amenable to hand calculation. In the next example we consider
higher values of n which make hand calculation almost impossible. We have
used a spreadsheet to develop the solutions. The interested reader could, of
course, use any of the widely available computational packages such as MATLAB,
Mathematica and Mathcad. These computer algebra packages are particularly
helpful for obtaining the integrals in the least squares and the Galerkin methods.

Example 2.7 We shall implement spreadsheet solutions with n = 4, i.e.

(2.12) ũ4 = x(1 − x)(c0 + c1x + c2x
2 + c3x

3 + c4x
4).

Collocation.

r(ũ4) = 2c0 + (6x − 2)c1 + (12x2 − 6x)c2 + (20x3 − 12x2)c3

+ (30x4 − 20x3)c4 − ex,

and we shall collocate at the five points x = 0.1, 0.3, 0.5, 0.7, 0.9. The spread-
sheet implementation is shown in Fig. 2.2.

We see that

ũ4 = x(1 − x)(0.718285 + 0.218225x + 0.051914x2 + 0.009267x3 + 0.002305x4).

Overdetermined collocation. In this case we shall collocate at the nine points
x = 0.1, 0.2, . . . , 0.9. The spreadsheet implementation is shown in Fig. 2.3.

We see that

ũ4 = x(1 − x)(0.718216 + 0.218224x + 0.051912x2 + 0.009264x3 + 0.002308x4).
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Fig. 2.2 Spreadsheet for the collocation method.

Fig. 2.3 Spreadsheet for the overdetermined collocation method.

Least squares. The basis functions are, from eqn (2.12),

vi(x) = (1 − x)xi+1, i = 0, . . . , 4,

so that

Lvi = −(i + 1)ixi−1 + (i + 2)(i + 1)xi, i = 0, . . . , 4,

and the integrals are given in Table 2.2. The spreadsheet implementation is
shown in Fig. 2.4.

We see that

ũ4 = x(1 − x)(0.718282 + 0.218256x + 0.051847x2 + 0.009299x3 + 0.002316x4).



20 The Finite Element Method

Table 2.2 The integrals
∫ 1

0 LviLvj dx and∫ 1
0 exLvi dx for the least squares method

i, j 0 1 2 3 4

0 4 2 2 2 2 2e − 2

1 2 4 4 4 4 8 − 2e

2 2 4
24
5

26
5

38
7

12e − 30

3 2 4
26
5

28
35

45
7

144 − 52e

4 2 4
38
7

45
7

50
7

310e − 840

Fig. 2.4 Spreadsheet for the least squares method.

Galerkin. As in the least squares method, the basis functions are

vi(x) = (1 − x)xi+1,

and the integrals are given in Table 2.3. The spreadsheet implementation is
shown in Fig. 2.5.

We see that

ũ4 = x(1 − x)(0.718284 + 0.218234x + 0.051895x2 + 0.009272x3 + 0.002312x4).

So far, the problems considered have involved Dirichlet boundary conditions
only and the trial functions have been assumed to satisfy them. Let us now see
how to handle a Robin boundary condition.

Consider the equation

(2.13) −u′′ = f, 0 < x < 1,
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Table 2.3 The integrals
∫ 1

0 viLvj dx and
∫ 1

0 exvi dx
for the Galerkin method

i, j 0 1 2 3 4

0
1
3

1
6

1
10

1
15

1
21

3 − e

1
1
6

2
15

1
10

8
105

5
84

3e − 8

2
1
10

1
10

3
35

1
14

5
84

30 − 11e

3
1
15

8
105

1
14

4
63

1
18

53e − 144

4
1
21

5
84

5
84

1
18

5
99

840 − 309e

Fig. 2.5 Spreadsheet for the Galerkin method.

with the boundary conditions

(2.14) u(0) = g,

(2.15) u′(1) + σu(1) = h.

We choose the trial function ũ to satisfy the Dirichlet condition (2.14), and the
weighting function v to satisfy the homogeneous form of the Dirichlet boundary
condition, i.e. to satisfy

(2.16) v(0) = 0.

The weighted residual formulation

(2.17)
∫ 1

0

r(u)v dx = 0
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is true for all functions v(x) if u(x) is the solution of eqn (2.13). We now use
integration by parts in eqn (2.17) with r(u) = −u′′ − f :

[−u′v]x=1
x=0 +

∫ 1

0

(u′v′ − fv) dx = 0.

Using the boundary condition (2.15), we obtain

(2.18) u′(0)v(0) +
∫ 1

0

(u′v′ − fv) dx + [(σu − h) v]x=1 = 0.

In eqn (2.18), we have an integral formulation of the boundary-value problem
in which the order of the highest derivative occurring has been reduced. This
formulation is often called a weak form of the problem. If we return to eqn (2.18)
and use the fact that v(0) = 0, eqn (2.16), we obtain

(2.19)
∫ 1

0

(u′v′ − fv) dx + [(σu − h) v]x=1 = 0.

Here we see that the Robin condition is automatically satisfied in the weak form
(2.19). Such a condition is called a natural boundary condition. The Dirichlet
condition, which it was necessary to impose, is called an essential boundary
condition.

We can use eqn (2.19) to develop a Galerkin approach to an approximate
solution ũn, eqn (2.7), with basis functions vi(x):

(2.20)
∫ 1

0

(ũ′v′
i − fvi) dx + [(σũ − h) vi]x=1 = 0.

Example 2.8

−u′′ = x, 0 < x < 1,

u(0) = 2, u′(1) = 3.

Choose a quadratic trial function which satisfies the essential boundary condition

ũ2(x) = 2 + c1x + c2x
2.

Then eqn (2.20) yields∫ 1

0

{(c1 + 2c2x) 1 − xx} dx + (−3) x |x=1= 0

and ∫ 1

0

{
(c1 + 2c2x) 2x − xx2

}
dx + (−3) x2 |x=1= 0.
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Thus [
1 1

1 4
3

][
c1

c2

]
=

[
10
3

13
4

]
,

giving c1 = 43
12 , c2 = − 1

4 so that

ũ2(x) = 2 +
43
12

x − 1
4
x2.

Notice that ũ′
2(1) = 37

12 ≈ 3.08, compared with the exact value u′(1) = 3.
This problem has an exact solution which is cubic in x, which would be

recoverable exactly by ũn(x) with n ≥ 3.
If we change the right-hand side to ex, then the exact solution is

u(x) = 3 + (3 + e)x − ex.

A spreadsheet implementation yields

ũ2(x) = 2 + 4.845155x − 0.845155x2,

so that ũ′
2(1) ≈ 3.154845, compared with u′(1) = 3.

Similarly, we can show that

ũ5(x) = 2 + 4.718229x − 0.499224x2 − 0.170193x3 − 0.034916x4 − 0.013896x5,

so that ũ′
5(1) ≈ 3.000058.

Finally, then, consider Poisson’s equation

−∇2u = f in D

subject to the boundary conditions

(2.21) u = g(s) on C1

and

(2.22)
∂u

∂n
+ σ(s)u = h(s) on C2.

The weighted residual formulation is

−
∫ ∫

D

(∇2ũ + f
)
vi dx dy = 0, i = 0, . . . , n,

which becomes, using the first form of Green’s theorem,∫ ∫
D

grad ũ · grad vi dx dy −
∮

C

vi
∂ũ

∂n
ds −

∫ ∫
D

fvi dx dy, i = 0, . . . , n.
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On C2, the Robin boundary condition (2.22) holds, and on C1 the trial function
must satisfy the essential Dirichlet condition (2.21), while the basis functions
satisfy the homogeneous form of this condition, i.e. on C1, vi = 0.

Thus the Galerkin equations become
(2.23)∫ ∫

D

(
∂ũ

∂x

∂vi

∂x
+

∂ũ

∂y

∂vi

∂y
− fvi

)
dx dy +

∮
C2

(σũ − h) vi ds = 0, i = 0, . . . , n.

The procedure adopted to solve the boundary-value problem is very similar
to the one-dimensional case and is illustrated in Exercise 2.15.

2.4 Extremum formulation: homogeneous boundary
conditions

Although in this text we shall concentrate most of our attention on weighted
residual methods for the development of finite element equations, there is much
to be gained by setting the finite element method in a variational context. In
this section we develop the idea in terms of a simple mechanical example.

Many problems of practical interest are modelled by equations such as
eqn (2.1), and examples are given in Appendix A. These equations are often
equivalent to the problem of the minimization of a functional, which itself may
be interpreted in terms of the total energy of the system under consideration.

In any physical situation, an expression for the total energy could be
obtained and then minimized to find the equilibrium solution. However, instead
of finding the energy explicitly, it would be useful to be able to start with the
governing partial differential equation and develop the corresponding functional.
Generally, the functional may be obtained without directly determining an
expression for the total energy of the system. Indeed, the procedure could then
be considered as a mathematical technique independent of the physics of the
problem under consideration. To develop the general ideas, the following specific
problem is considered.

Example 2.9 It is required to find the equilibrium displacement of a membrane
stretched across a frame, in the shape of a curve C, which is subjected to a
pressure loading p(x, y) per unit area. If the tension T in the membrane is
assumed constant, then the transverse deflection w satisfies Poisson’s equation

(2.24) −∇2w =
p

T
.

Suppose that the membrane is given a small displacement Δw at the point (x, y).
If D is the surface area of the membrane, then the total work done by the applied
pressure force is
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Δ
∫ ∫

D

pw dx dy =
∫ ∫

D

p Δw dx dy

=
∫ ∫

D

−T ∇2w Δw dx dy

=
∫ ∫

D

−T {div (Δw grad w) − grad Δw · grad w} dx dy

= −
∮

C

T Δw
∂w

∂n
ds +

∫ ∫
D

T

2
Δ | gradw |2 dx dy.

The first integral is obtained using the divergence theorem, and the second
using Exercise 2.9.

Thus

(2.25) Δ
∫ ∫

D

pw dx dy = −T

∮
C

Δw
∂w

∂n
ds + Δ

∫ ∫
D

T

2
| grad w |2 dx dy.

If the boundary conditions are of the homogeneous Dirichlet type (2.2) on a part
C1 of C, then w is fixed, and hence Δw = 0 on C1. If the boundary conditions
are of the homogeneous Neumann type (2.3) on C2, then ∂w/∂n = 0 on C2. This
represents the vanishing of the restraining force on C2 and is often referred to
as a free boundary condition. In either case, the boundary integral vanishes, and

Δ
∫ ∫

D

pw dx dy = Δ
∫ ∫

D

T

2
| grad w |2 dx dy,

or

Δ
∫ ∫

D

{
| grad w |2 −2p

T
w

}
dx dy = 0.

Thus if I [w] is the functional given by

(2.26) I [w] =
∫ ∫

D

{(
∂w

∂x

)2

+
(

∂w

∂y

)2

− 2p

T
w

}
dx dy,

then the solution of eqn (2.24), subject to the homogeneous boundary conditions,
is such that ΔI = 0.

To interpret I, the integrand may be seen to be proportional to

1
2
T

{(
∂w

∂x

)2

+
(

∂w

∂y

)2
}

− pw.

The first term represents the potential energy per unit area stored in the mem-
brane, and the second term is the potential energy per unit area of the applied
pressure force. Thus I [w] as given by eqn (2.26) is proportional to the total
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potential energy of the system. ΔI = 0 for equilibrium is equivalent to saying
that at equilibrium, the potential energy is stationary.

If a part C3 of the boundary is elastically supported, then neither a Dirichlet
nor a Neumann boundary condition is suitable. In this case the boundary
condition is of the Robin type (2.4), and

∂w

∂n
= −σw on C3.

This leads, from eqn (2.25), to an extra term

∫
C3

σw2 ds

in I [w]. This term is proportional to the potential energy stored in the elastic
support on C3.

Thus the modified functional is

(2.27) I [w] =
∫ ∫

D

{(
∂w

∂x

)2

+
(

∂w

∂y

)2

− 2p

T
w

}
dx dy +

∫
C3

σw2 ds.

In this particular case it was possible to transform the integral from one
involving second derivatives in the integrand to another containing only first
derivatives. This was accomplished by way of Green’s theorem and the use of
the homogeneous boundary condition. It is not difficult to see that in eqn (2.27)
the term (∂w/∂x)2 + (∂w/∂y)2 could be transformed back again to give

(2.28) I [w] =
∫ ∫

D

{
w

(−∇2w
)− 2p

T
w

}
dx dy;

see Exercise 2.10.
The final form (2.28) of the functional for eqn (2.24) would suggest that, in

general, for eqn (2.1), i.e. Lu = f in some region D, with homogeneous boundary
conditions, the functional should be

(2.29) I [u] =
∫ ∫

D

uLu dx dy − 2
∫ ∫

D

uf dx dy.

It will now be shown that if L is a self-adjoint, positive definite operator,
then the unique solution of Lu = f , with homogeneous boundary conditions,
occurs at a minimum value of I [u] as given by eqn (2.29).

Suppose that u0 is the exact solution; then

Lu0 = f.
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Thus

I [u] =
∫ ∫

D

uLu dx dy − 2
∫ ∫

D

uLu0 dx dy

=
∫ ∫

D

uL (u − u0) dx dy −
∫ ∫

D

uLu0 dx dy

=
∫ ∫

D

uL (u − u0) dx dy −
∫ ∫

D

(u − u0)Lu0 dx dy −
∫ ∫

D

u0Lu0 dx dy.

Since L is self-adjoint and the boundary conditions are homogeneous,

I [u] =
∫ ∫

D

(u − u0)Lu dx dy −
∫ ∫

D

(u − u0)Lu0 dx dy −
∫ ∫

D

u0Lu0 dx dy

=
∫ ∫

D

(u − u0)L (u − u0) dx dy −
∫ ∫

D

u0Lu0 dx dy.

Since L is positive definite and u0 is non-trivial,∫ ∫
D

u0Lu0 dx dy > 0

and ∫ ∫
D

(u − u0)L (u − u0) dx dy ≥ 0,

equality occurring if and only if u ≡ u0. Thus I [u] takes its minimum value when
u = u0.

This result gives a method for finding an approximate solution to the
equation Lu = f with homogeneous boundary conditions. A systematic method
of finding such an approximate solution is the Rayleigh–Ritz method, which, as
will be seen in Section 2.7, seeks a stationary value of I by finding its derivatives
with respect to a chosen set of parameters.

Suppose that u0 is a function which yields a stationary value for I [u].
Consider variations around u0 given by the so-called trial function

ũ = u0 + αv,

where v is an arbitrary function and α is a variable parameter. Then I[u] is
stationary when α = 0, i.e.

(2.30)
dI

dα

∣∣∣∣
α=0

= 0.

Now,

I[ũ] =
∫ ∫

D

(u0 + αv)L (u0 + αv) dx dy − 2
∫ ∫

D

(u0 + αv) f dx dy.
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Thus

dI

dα
=

∫ ∫
D

{vL (u0 + αv) + (u0 + αv)Lv} dx dy − 2
∫ ∫

D

vf dx dy,

since L and d/dα commute, so that eqn (2.30) gives∫ ∫
D

(vLu0 + u0Lv) dx dy − 2
∫ ∫

D

vf dx dy.

Since L is self-adjoint and the boundary conditions are homogeneous, it then
follows that ∫ ∫

D

v (Lu0 − f) dx dy = 0.

Finally, since v is arbitrary, the integral vanishes if and only if Lu0 = f , i.e. u0

is the unique solution of eqn (2.1).
In practice, the choice of trial functions is restricted and it is usually

impossible to choose a function u which locates the exact minimum; the best
that can be done is to set up a sequence of approximations to it. An important
question which then arises is ‘does this sequence converge to the unique solution?’
The answer for a self-adjoint, positive definite operator is yes, provided that
the set of trial functions is complete, since a stationary point corresponds to a
solution of the equation and this solution is unique. There can be one stationary
point only for the functional, and this yields its minimum value. Thus the
approximating sequence will provide a monotonically decreasing sequence of
values for I[u] bounded below by its minimum value I[u0].

It is important to remember that the results in this section relate to positive
definite operators, such as those associated with steady-state problems which
yield elliptic operators. However, for time-dependent problems, the associated
operators are usually hyperbolic or parabolic and, as such, are not positive
definite. Nevertheless, variational principles often do exist for such problems,
and we shall consider them briefly in Section 2.9.

2.5 Non-homogeneous boundary conditions

In Section 2.4, the functional for Lu = f was deduced assuming that the bound-
ary conditions were homogeneous. It was due to this fact that L was seen to
be linear, self-adjoint and positive definite. In general, of course, most problems
involve non-homogeneous boundary conditions, and in this section the functional
given by eqn (2.29) is extended to include such cases.

The boundary conditions to be considered are the non-homogeneous
counterparts of eqns (2.2), (2.3) and (2.4), which are:
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• Dirichlet boundary condition,

u = g(s);

• Neumann boundary condition,

∂u

∂n
= j(s);

• Robin boundary condition,

∂u

∂n
+ σ(s)u = h(s).

The Neumann condition will be treated as a special case of the Robin
condition with σ(s) ≡ 0. All three of these conditions are of the form

(2.31) Bu = b(s),

where B is a suitable linear differential operator. Thus the problem to be
considered is that of finding the solution, u0, of eqn (2.1), i.e. Lu0 = f , subject
to the boundary condition (2.31).

The procedure is to change the problem to one with homogeneous boundary
conditions. Suppose that v is any function which satisfies the boundary condition
(2.31), i.e. Bv = b.

Then, if

(2.32) w = u − v,

Bw = Bu − Bv, since B is linear. Thus

(2.33) Bw = 0,

provided the function u is chosen to satisfy the boundary conditions.
Let

w0 = u0 − v;

then

Lw0 = Lu0 − Lv, since L is linear,

= f − Lv.

Now let

(2.34) F = f − Lv;
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then

Lw0 = F.

w0 also satisfies the homogeneous boundary conditions (2.33), so that, using
the results of Section 2.4, w0 must be the unique function which minimizes the
functional

I[w] =
∫ ∫

D

(wLw − 2wF ) dx dy.

But this functional can be rewritten in terms of u using eqns (2.32) and (2.34)
as

I[u] =
∫ ∫

D

{(u − v)L (u − v) − 2 (u − v) (f − Lv)} dx dy

=
∫ ∫

D

(uLu − 2uf + uLv − vLu) dx dy +
∫ ∫

D

(2vf − vLv) dx dy.

Now the last integral on the right-hand side is a fixed quantity as far as the
minimization is concerned, and as such cannot affect the function u0 which gives
the minimum value. Consequently, this term may be deleted from I, leaving the
functional as

(2.35) I[u] =
∫ ∫

D

(uLu − 2uf + uLv − vLu) dx dy,

which is minimized by u0.

Example 2.10 Consider Poisson’s equation

(2.36) −∇2u = f in D

subject to the non-homogeneous Dirichlet condition

(2.37) u = g(s) on C.

In this case the last two terms in eqn (2.35) may be integrated using the second
form of Green’s theorem to give∫ ∫

D

(
v∇2u − u∇2v

)
dx dy =

∮
C

(
v
∂u

∂n
− u

∂v

∂n

)
ds

=
∮

C

(
g
∂u

∂n
− g

∂v

∂n

)
ds,

since both u and v satisfy the boundary condition.
Now the second term on the right-hand side is independent of u and thus

cannot be varied in the minimization of the functional. This term may be deleted
to give the functional as
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I[u] =
∫ ∫

D

(−u∇2u − 2uf
)
dx dy +

∮
C

g
∂u

∂n
ds,

which, using the first form of Green’s theorem, yields

I[u] =
∫ ∫

D

|grad u|2 dx dy −
∮

C

u
∂u

∂n
ds

−
∫ ∫

D

2uf dx dy +
∮

C

g
∂u

∂n
ds.

But on C, u = g, so that the two boundary integrals cancel, leaving the
functional as

(2.38) I[u] =
∫ ∫

D

{(
∂u

∂x

)2

+
(

∂u

∂y

)2

− 2uf

}
dx dy.

This functional is minimized by the solution u0 of eqn (2.36) with the bound-
ary condition (2.37). It is interesting to note that this functional is identical
with the functional for the problem with homogeneous boundary conditions,
eqn (2.26). However, when using this functional to find approximate solutions
to the boundary-value problem, it is necessary that all trial functions satisfy the
essential non-homogeneous boundary condition.

Example 2.11 In this example we consider Poisson’s eqn (2.36) in D, subject to
the Robin boundary condition

(2.39)
∂u

∂n
+ σ(s)u = h(s) on C.

As in Example 2.10, Green’s theorem is used to give∫ ∫
D

(
v∇2u − u∇2v

)
dx dy =

∮
C

(
v
∂u

∂n
− u

∂v

∂n

)
ds

=
∮

C

(v(h − σu) − u(h − σv)) ds

=
∮

C

(vh − uh) ds.

Once again, the first term on the right-hand side is independent of u and may
be deleted from the functional, giving

I[u] =
∫ ∫

D

{|gradu|2 − 2uf
}

dx dy −
∮

C

(
u

∂u

∂n
+ uh

)
ds,

where the first term has been obtained, in the usual manner, from the first form
of Green’s theorem.
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Finally, then, since u satisfies the boundary condition (2.39), it follows that

(2.40) I[u] =
∫ ∫

D

{(
∂u

∂x

)2

+
(

∂u

∂y

)2

− 2uf

}
dx dy +

∮
C

(
σu2 − 2uh

)
ds

is the functional which is minimized by the solution u0 of Poisson’s eqn (2.36)
subject to the Robin boundary condition (2.39). The functional for the Neumann
problem is found by setting σ ≡ 0, to give

I[u] =
∫ ∫

D

{(
∂u

∂x

)2

+
(

∂u

∂y

)2

− 2uf

}
dx dy −

∮
C

2uh ds.

2.6 Partial differential equations: natural boundary conditions

In Exercise 2.2, it is shown that under certain circumstances the general linear
second-order partial differential operator L may be given by the expression

Lu = −div (κ gradu) + ρu.

The Robin boundary condition may also be generalized to give an expression of
the form

(2.41) (κ gradu).n + σ(s)u = h(s).

Suppose that u0 is the solution of

Lu = f

subject to the Dirichlet boundary condition

u = g(s)

on some part C1 of the boundary and the Robin condition (2.41) on the remainder
C2.

In the development which follows, generalizations of Green’s theorem are
needed. They are proved in Exercise 2.2 and stated here for convenience.

The first form is ∮
C

u(κ grad v) · n ds

=
∫ ∫

D

gradu · κ grad v dx dy +
∫ ∫

D

u div(κ grad v) dx dy.(2.42)
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The second form, for symmetric κ is∮
C

{u(κ grad v) · n − v(κ gradu) · n} ds =
∫ ∫

D

{u div(κ grad v)

−v div(κ gradu)} dx dy.(2.43)

Now, in this case, the last two terms in the functional (2.35) are given by

I[u] =
∫ ∫

D

{v div(κ gradu) − u div(κ grad v)} dx dy

using eqn (2.43)

I[u] =
∮

C

{u(κ grad v) · n − v(κ gradu) · n} ds

=
∮

C

{v(κ gradu) · n − u(κ grad v) · n} ds

=
∫

C1

{g(κ gradu) · n − g(κ grad v) · n} ds +
∫

C2

(vh − uh)ds

using the boundary conditions on C1 and C2.
Now the second and third terms are independent of the trial function u, and

as such may be deleted from the functional to give

I[u] =
∫ ∫

D

{−u div(κ gradu) + ρu2 − 2uf
}

dx dy

+
∫

C1

g(κ gradu) · n ds −
∫

C2

uh ds

=
∫ ∫

D

gradu · (κ gradu) dx dy −
∫

C

u(κ gradu) · n ds

+
∫ ∫

D

(ρu2 − 2uf) dx dy +
∫

C1

g(κ gradu) · n ds −
∫

C2

uh ds.

Thus, using the boundary conditions on C1 and C2,
(2.44)

I[u] =
∫ ∫

D

{
gradu · (κ gradu) + ρu2 − 2uf

}
dx dy +

∫
C2

(σu2 − 2uh) ds.

Again the derivation of the functional shows that all trial functions must satisfy
the essential Dirichlet boundary condition.

Nothing has been said about the Neumann boundary condition. To illustrate
the role of this condition, consider Poisson’s equation, eqn (2.36),
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−∇2u = f in D

subject to the Neumann boundary condition

∂u

∂n
= h(s) on C.

Then, from the functional (2.40), with σ ≡ 0, the solution u0 minimizes

I[u] =
∫ ∫

D

{(
∂u

∂x

)2

+
(

∂u

∂y

)2

− 2uf

}
dx dy −

∮
C

2uh ds.

Using trial functions of the form

ũ = u0 + αv,

the functional becomes

I(α) =
∫ ∫

D

{grad(u0 + αv) · grad(u0 + αv) − 2(u0 + αv)f} dx dy

−
∮

C

2(u0 + αv)h ds,

so that

dI

dα
=

∫ ∫
D

{grad v · grad(u0 + αv) + grad(u0 + αv) · grad v − 2vf} dx dy

−
∮

C

2vh ds.

Since dI/dα = 0 when α = 0, it follows that∫ ∫
D

{grad v · gradu0 − vf} dx dy −
∮

C

vh ds = 0.

Thus, using the first form of Green’s theorem, we find

−
∫ ∫

D

v
(∇2u + f

)
dx dy +

∮
C

v

(
∂u0

∂n
− h

)
ds = 0.

Now, since v is arbitrary, it follows that this equation can hold only if −∇2u0 = f

and ∂u0/∂n = h. Thus the stationary point occurs at the solution of the differ-
ential equation and the Neumann boundary condition is satisfied naturally, i.e.
it does not have to be enforced on the trial functions. This Neumann condition
is a natural boundary condition.

In a similar manner (see Exercise 2.11), it may be shown that the
Robin boundary condition (2.41) is a natural boundary condition for the func-
tional (2.44), i.e. provided that the Dirichlet boundary condition is enforced
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where applicable, then at the stationary value of the functional (2.44), the
equation Lu = f is satisfied in D, and the Robin boundary condition (2.41)
is satisfied naturally over that part of the boundary on which it applies.
This result is extremely useful in that the boundary condition which is
most difficult to enforce, namely the Robin condition, is satisfied naturally
by choosing a suitable functional. This means that for any given degree of
polynomial approximation, there are more variational parameters available
for minimization than there would be if this condition were enforced (see
Exercise 2.6).

In Section 2.3, we developed the concept of the essential and natural
boundary conditions in a weighted-residual context. In this section we have
seen how they arise in a variational context. The important point is that no
matter how we develop methods for the approximate solution of boundary-value
problems, our trial functions must satisfy the essential boundary conditions.
A measure of the ‘quality’ of the approximate solution is how well the natural
boundary conditions are satisfied.

2.7 The Rayleigh–Ritz method

The Rayleigh–Ritz method provides an algorithm for minimizing a given func-
tional and requires the choice of a suitable complete set of linearly independent
basis functions vi(x, y), i = 0, 1, 2, . . . . The exact solution, u, is approximated
by a sequence of trial functions

(2.45) ũn =
n∑

i=0

civi,

where the constants ci are chosen to minimize I[ũn] at each stage (cf. eqn (2.7)).
A measure of the ‘quality’ of the solution is how well the natural conditions are
satisfied.

If ũn → u as n → ∞ in some sense (see Chapter 7), then the procedure is
said to converge to the solution. At each stage, the problem is reduced to one of
solving a system of linear algebraic equations.

Consider Poisson’s equation −∇2u = f with homogeneous Dirichlet or
Neumann boundary conditions.

The functional is given by eqn (2.27) as

I[u] =
∫ ∫

D

{(
∂u

∂x

)2

+
(

∂u

∂y

)2

− 2uf

}
dx dy.
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Using the approximation (2.45), this functional may be written as

I(c0, . . . , cn) =
∫ ∫

D

{(∑
ci

∂vi

∂x

)2

+
(∑

ci
∂vi

∂y

)2

− 2
∑

civif

}
dx dy

= c2
i

∫ ∫
D

{(
∂vi

∂x

)2

+
(

∂vi

∂y

)2
}

dx dy

+ 2
∑
j �=i

cicj

∫ ∫
D

(
∂vi

∂x

∂vj

∂x
+

∂vi

∂y

∂vj

∂y

)
dx dy

− 2ci

∫ ∫
D

vif dx dy + terms independent of ci.

Therefore

(2.46)
∂I

∂ci
= 2Aiici + 2

∑
j �=i

Aijcj − 2hi,

where

(2.47) Aij =
∫ ∫

D

(
∂vi

∂x

∂vj

∂x
+

∂vi

∂y

∂vj

∂y

)
dx dy

and

(2.48) hi =
∫ ∫

D

vif dx dy.

Now the variational parameters ci are to be chosen such that I(c0, . . . , cn) is a
minimum. Thus

∂I

∂ci
= 0, i = 0, . . . , n.

Equation (2.46) then gives

n∑
j=0

Aijcj = hi, i = 0, . . . , n,

or

(2.49) Ac = h,

where the elements of the matrices A and h are given by eqns (2.47) and (2.48)
and c = [c0, c1, . . . , cn]T . Equation (2.49) is a system of linear algebraic equations
for the unknown parameters which has a unique solution provided that A is non-
singular.
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At the end of this section, the general form of the Rayleigh–Ritz matrices
will be presented and it will be shown that A is non-singular whenever the
operator L is positive definite. First, however, the method will be illustrated by
the following example.

Example 2.12 Consider the two-point boundary-value problem (2.8)

−u′′ = x2, 0 < x < 1,

u(0) = u(1) = 0.

Suppose we take a cubic approximation ũ2(x), remembering that the trial
function must satisfy the essential boundary conditions. Thus

ũ3 = x(1 − x)(c0 + c1x).

Using the one-dimensional forms of eqns (2.47) and (2.48),

A11 =
∫ 1

0

(1 − 2x)2 dx =
1
3
, A22 =

∫ 1

0

(2x − 3x2)2 dx =
2
15

,

A12 = A21 =
∫ 1

0

(1 − 2x)(2x − 3x2)2 dx =
1
6
,

h1 =
∫ 1

0

(x − x2)x2 dx =
1
20

, h2 =
∫ 1

0

(x2 − x3)x2 dx =
1
30

.

Thus the Rayleigh–Ritz equations (2.49) are[
1
3

1
6

1
6

2
15

][
c0

c1

]
=

[
1
20

1
30

]
.

Solving yields c0 = 1
15 , c1 = 1

6 . Thus the Rayleigh–Ritz cubic approximation is
given by

ũ2(x) =
1
30

x(1 − x)(2 + 5x).

The exact solution is u0 = 1
12x(1 − x3), and a comparison between ũ2 and u0 is

shown in Figure 2.6.

In this particular example, the Rayleigh–Ritz method gives a good approx-
imation to the exact solution with only two parameters, c0 and c1. This is due
to the simplicity of the problem and the fact that the exact solution would be
recovered if a quartic trial function was used. This is a special case of the general
result that if the exact solution is a linear combination of the basis functions
used, then the approximating method will yield the exact solution (see Exer-
cises 2.3 and 2.15). For problems in which the exact solution is a transcendental
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Fig. 2.6 Comparison of the Rayleigh–Ritz cubic approximate solution with the exact
solution for the problem of Example 2.12.

function, a low-order polynomial approximation is not likely to yield a good
approximation.

So far, only homogeneous boundary conditions have been considered, and
the basis functions have been chosen to satisfy these conditions. However, if the
boundary conditions are non-homogeneous, it is not just a matter of forcing the
basis functions themselves to satisfy them, since a linear combination will not
satisfy the given conditions. Thus the next stage is to develop the Rayleigh–Ritz
method further to include non-homogeneous conditions.

Consider Poisson’s equation −∇2u = f with the non-homogeneous bound-
ary conditions

u = g(s) on C1

and

∂u

∂n
+ σ(s)u = h(s) on C2.

The functional is given by eqn (2.40) as

I[u] =
∫ ∫

D

{(
∂u

∂x

)2

+
(

∂u

∂y

)2

− 2uf

}
dx dy +

∫
C2

(σu2 − 2uh) ds.
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Choose a linearly independent set of basis functions vi which satisfy the homoge-
neous Dirichlet condition vi = 0 on C1; then a sequence of trial functions which
satisfy the non-homogeneous Dirichlet condition on C1 is

(2.50) ũn = g +
n∑

i=1

civi.

Notice that this may be written as

ũn =
n∑

i=0

civi,

where v0 = g and c0 = 1. Then

I(c0, c1, . . . , cn) =
∫ ∫

D

{(∑
ci

∂vi

∂x

)2

+
(∑

ci
∂vi

∂y

)2

− 2
∑

civif

}
dx dy

+
∫

C2

{
σ
(∑

civi

)2

− 2
(∑

civi

)
h

}
ds.

All the parameters except c0 are unknown, and may be used to minimize I in a
similar manner to the homogeneous case to give

∂I

∂ci
= 2Aiici + 2

∑
j �=1

Aijcj − 2hi + 2Siici + 2
∑
j �=1

Sijcj − 2ki, i = 0, . . . , n,

where Aij and hi are given by eqns (2.47) and (2.48), respectively. The coefficients
Sij and ki are due to the non-homogeneous boundary terms, and are given by

(2.51) Sij =
∫

C2

σvivj ds

and

(2.52) ki =
∫

C2

vih ds.

Thus the set of equations ∂I/∂ci = 0, i = 0, . . . n, is a rectangular set

Bc = g,

where

Bij = Aij + Sij

and

gi = hi + ki.
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B is an n × (n + 1) matrix and c = [c0 c1 . . . cn]T . Consider the first equation
of the set, viz.

B01c0 + B02c2 + · · · + B0ncn = g0.

Since c0 = 1, this may be written as

B02c2 + · · · + B0ncn = g0 − B01.

The other equations may be rewritten in a similar manner to yield the square
set of equations

(2.53) B′c′ = g′,

where

B′
ij = Bij , i, j = 1, . . . , n,

c′i = ci, i = 1, . . . , n,

g′i = gi − Bin, i = 1, . . . , n.

This is exactly the procedure adopted in the finite element method in Chapter 3.

Example 2.13

−u′′ = x, 0 < x < 1,

u(0) = 2, u′(1) = 3.

Take as trial function ũ2 = 2 + c1x + c2x
2, which satisfies the essential boundary

condition ũ2(0) = 2. Then

A11 =
∫ 1

0

1 dx = 1, A22 =
∫ 1

0

4x2 dx =
4
3
,

A12 = A21 =
∫ 1

0

1.2x dx = 1,

A13 =
∫ 1

0

x.0x dx = 0, A23 =
∫ 1

0

x20 dx = 0,

Sij = 0, i = 1, 2, j = 1, 2, 3, since here σ = 0,

h1 =
∫ 1

0

xx dx =
1
3
, h2 =

∫ 1

0

x2x dx =
1
4
,

k1 = [x3]x=1 = 3, k2 =
[
x23

]
x=1

= 3.

Just as in Example 2.12, the one-dimensional forms of eqns (2.47), (2.48), (2.51)
and (2.52) have been used.
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Table 2.4 Comparison of the Rayleigh–Ritz quadratic
approximation with the exact solution for Example 2.13

x 0 0.2 0.4 0.6 0.8 1

Rayleigh–Ritz 2 2.707 3.393 4.060 4.707 5.333
Exact solution 2 2.699 3.389 4.064 4.715 5.333

The Rayleigh–Ritz equations (2.53) are thus[
1 1

1 4
3

][
c1

c2

]
=

[
1
3 + 3 − 0
1
4 + 3 − 0

]
,

which give c1 = 43
12 , c2 = − 1

4 . Thus the approximate solution is

ũ2(x) = 2 +
43
12

x − 1
4
x2.

This is compared with the exact solution

u0(x) = 2 +
7
2
x − 1

5
x3

in Table 2.4. The agreement is seen to be good and, in particular, ũ′
2(1) = 37

12

may well be an acceptable approximation to the natural Neumann boundary
condition u′(1) = 3.

So far, the Rayleigh–Ritz procedure has been followed in a purely formal
manner. It will now be proved that if L is positive definite then the Rayleigh–Ritz
method produces non-singular matrices and that the sequence of approximations
converges to the exact solution. Now, suppose that u0 is the solution of

(2.54) Lu = f in D

subject to the boundary condition

(2.55) Bu = b(s) on C.

Notice that the boundary condition is non-homogeneous; on some parts of the
boundary an essential condition will hold, and on other parts a natural condition
will hold. This will be dealt with as follows: the essential boundary condition will
be enforced on the trial functions and the natural boundary conditions will be
satisfied approximately by the choice of a suitable functional. The functional for
eqn (2.54) is given by eqn (2.35),

I[u] =
∫ ∫

D

(uLu − 2uf + uLw − wLu) dx dy,
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where w is any function which satisfies the boundary condition (2.55). Choose
a complete set of linearly independent basis functions vi and define the trial
function ũn in the usual way,

ũn =
n∑

i=0

civi.

Thus, in a similar manner to that leading to eqn (2.46),

I(c0, c1, . . . , cn) = c2
i

∫ ∫
D

viLvi dx dy

+
∑
j �=i

cicj

∫ ∫
(viLvj + vjLvi) dx dy

+ ci

∫ ∫
D

(−2vif + viLw − wLvi) dx dy

+ terms independent of ci, i = 0, . . . n.

Thus

∂I

∂ci
= 2ci

∫ ∫
D

viLvi dx dy +
∑
j �=i

cj

∫ ∫
D

(viLvj + vjLvi) dx dy

+
∫ ∫

D

(−2vif + viLw − wLvi) dx dy, i = 0, . . . , n.

The parameters ci are chosen to make I stationary, so that ∂I/∂ci = 0. Hence
the following set of equations is obtained:

(2.56)
n∑

j=0

Aijcj = hj , i = 0, . . . , n,

where

(2.57) Aij =
1
2

∫ ∫
D

(viLvj + vjLvi) dx dy

and

hi =
∫ ∫

D

{
vif +

1
2
(wLvi − viLw)

}
dx dy.

In matrix form, eqns (2.56) may be written as

Ac = h,

and the coefficients ci may be found provided that A is non-singular.
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If L is positive definite, then A is non-singular; the proof is as follows.
Suppose that A is singular; then there exists a non-trivial solution x0 of

Ax = 0.

Thus

(2.58) xT
0 Ax0 = 0.

Now, if v = [v0, . . . , vn]T , then using eqn (2.57),

A =
1
2

∫ ∫
D

{
(Lv)vT + v(Lv)T

}
dx dy,

so that eqn (2.58) becomes

∫ ∫
D

L (
xT

0 v
)
vT x0 dx dy = −

∫ ∫
D

xT
0 v (Lv)T

x0 dx dy

= −
∫ ∫

D

xT
0 (Lv)vT x0 dx dy,

since the right-hand side is a scalar, so that transposition leaves it unchanged.
Thus

∫ ∫
D

L (
xT

0 v
)
vT x0 dx dy = −

∫ ∫
D

L (
xT

0 v
)
vT x0 dx dy.

It follows, then, that there exists a scalar function V = xT
0 v such that

∫ ∫
D

V LV dx dy = 0.

Now L is positive definite; thus V ≡ 0 and, since x0 is a non-trivial vector, the
functions vi must be linearly dependent. But the chosen set of functions vi are
linearly independent. The contradiction proves that A is non-singular and a
unique solution exists whenever L is positive definite.

It may also be shown (Mikhlin 1964) that the Rayleigh–Ritz procedure yields
a minimizing sequence and that it converges to the exact solution.
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2.8 The ‘elastic analogy’ for Poisson’s equation

In elasticity problems, the stresses may be derived from an elastic potential W

by the equations (Sokolnikoff 1956)

σx =
∂W

∂εx
, σy =

∂W

∂εy
, σz =

∂W

∂εz
,

σxy
∂W

∂εxy
, σyz =

∂W

∂εyz
, σzx =

∂W

∂εzx
,

where W is given by

W =
1
2
εT σ.

W is sometimes called the strain energy density, since the strain energy is given
by

∫
V

W dV.

The strain and stress vectors are given respectively by

ε = [εx, εy, εz, εxy, εyz, εzx]T ,

σ = [σx, σy, σz, σxy, σyz, σzx]T .

The relationship between the stress and strain takes the form

(2.59) σ = κε,

where

κ =
E

(1 + v)(1 − 2v)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − v v v 0 0 0
v 1 − v v 0 0 0
v v 1 − v 0 0 0

0 0 0
1 − 2v

2
0 0

0 0 0 0
1 − 2v

2
0

0 0 0 0 0
1 − 2v

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

E and v are the Young’s modulus and Poisson’s ratio, respectively. Now the
strain–displacement, compatibility, relationship is

(2.60) ε = DT u,
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where D is the matrix of differential operators given by

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

∂

∂y
0

∂

∂z

0
∂

∂y
0

∂

∂x

∂

∂z
0

0 0
∂

∂z
0

∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The stresses and body forces satisfy the following equilibrium equation (Przemie-
niecki 1968):

(2.61) Dσ = −w,

and w is the vector of body forces per unit volume, given by

w = [wx wy wz]
T
.

By use of the stress–strain law (2.59) and the strain–displacement equation
(2.60), eqn (2.61) may be used to relate the displacements to the body forces by

(2.62) Lu = −w,

where the matrix differential operator L is given by

L(·) ≡ D
(
κDT (·)

)
.

Equation (2.62) is the vector equivalent of the scalar equation (2.1) and, to
preserve the notation already adopted, it will be written as

Lu = f .

The corresponding vector form of the functional (2.29) is

(2.63) I[u] =
∫

V

uT Lu dV − 2
∫

V

uT f dV.

There are two integral formulae in elasticity (Mikhlin 1964), known as Betti’s
formulae, which are very similar to the two forms of Green’s theorem for scalar
functions. The formula that is useful here is

(2.64)
∫

V

uT Lu dV = 2
∫

V

W dV −
∫

S

uT t dS,

where t is the stress vector defining the boundary tractions. In elasticity
problems, the usual boundary conditions are prescribed boundary forces or
displacements; thus the functional for homogeneous boundary conditions is, using
eqn (2.63) and (2.64),
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(2.65) I[u] =
∫

V

(
W − uT f

)
dV.

For non-homogeneous boundary conditions, a similar procedure to that used in
Section 2.5 yields the functional

I[u] =
∫

V

(
W − uT f

)
dV −

∫
S

uT t dS,

in which trial functions must satisfy the prescribed displacement condition

u = g(S)

on the boundary. Now consider the generalized Poisson equation

−div (κ gradu) = f,

which holds in some volume V bounded by a closed surface S. Suppose that
the following boundary conditions are prescribed: a Dirichlet condition u = g(S)
on a part S1 of the boundary and a Neumann condition ∂u/∂n = h(S) on the
remainder, S2. The functional is given by eqn (2.44), extended to the three-
dimensional case, as

(2.66) I[u] =
∫

V

{gradu · (κ gradu) − 2uf} dV − 2
∫

S2

uh dS,

and all trial functions must satisfy the essential Dirichlet boundary condition.
By comparison of eqn (2.66) with eqn (2.65), there is a close analogy between

the elasticity problem and problems modelled by Poisson’s equation. A fixed
displacement is equivalent to a Dirichlet boundary condition, which is an essential
condition and must be enforced on the trial functions. A given boundary force
is analogous to the natural Neumann boundary condition.

This analogy can in fact be set up directly in the modelling process, as
shown by the following example.

Example 2.14 Suppose that T (x, y) is the steady-state temperature in a material
occupying a region D in the xy plane; the extension to three dimensions follows
in a similar manner. Heat is generated in D by means of a source distribution
Q(x, y). An element of the material is shown in Fig. 2.7.

The total heat generated in the element is

Q(x, y) Δx Δy,

and the total amount of heat leaving the element is(
qx +

∂qx

∂x
Δx

)
Δy +

(
qy +

∂qy

∂y
Δy

)
Δx − qx Δy − qy Δx.
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Fig. 2.7 An element ABCD of a two-dimensional thermal conductor, showing the heat
flux over its sides.

Since, in the steady state, the amount of heat generated in the element must be
equal to that leaving it across its boundaries, it follows that

(2.67)
∂qx

∂x
+

∂qy

∂y
= Q.

This equation is called the continuity equation and represents the conservation
of heat in the material.

Now the heat flux is related to the temperature by the equations

(2.68)
qx = −κxx

∂T

∂x
− κxy

∂T

∂y
,

qy = −κyx
∂T

∂x
− κyy

∂T

∂y
,

where the coefficients are the elements of a tensor of the form (2.5). Thus
eqn (2.67) becomes the generalized Poisson equation

−div(κ gradT ) = Q.

In matrix form, eqn (2.68) may be written as

(2.69) σ = κε,

where σ = [qx, qy]T and ε = [−∂T/∂x,−∂T/∂y]T are directly analogous to the
stresses and strains in an elastic material; compare eqns (2.69) and (2.59).

Also, the continuity equation (2.67) may be written as

[∂/∂x ∂/∂y]
[

qx

qy

]
= [Q],
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which, by comparison with eqn (2.61), shows that the source term Q is analogous
to a body force in an elastic material.

Thus it has been shown that there is a direct analogy between field problems
described by Poisson’s equation and problems in elasticity. This is of historical
interest because, in the 1960s, engineering computer codes had been developed
for the solution of sophisticated structural problems. The elastic analogy allowed
these codes to be used for the first application of the finite element method to
field problems by Zienkiewicz and Cheung (1965).

2.9 Variational methods for time-dependent problems

Probably the most important time-dependent variational principle is that of
Hamilton. It states that the motion of a system from time t = 0 to time t = t0
is such that

I =
∫ t0

0

Ldt

is stationary.
L is the Lagrangian for the system and is related to the kinetic energy T

and the potential energy V by

L = T − V.

Consider the wave equation

(2.70)
∂2u

∂x2
=

1
c2

∂2u

∂t2
, 0 < x < 1 t > 0,

subject to the boundary conditions

u(0, t) = 0,(2.71)

u(1, t) = 0(2.72)

and the initial conditions

u(x, 0) = f(x),(2.73)

∂u

∂t
(x, 0) = g(x).(2.74)

This problem models many situations, including the small transverse vibrations
of a uniform elastic string stretched between the fixed points x = 0, x = 1 subject
to an initial displacement distribution f(x) and an initial velocity distribution
g(x). If the tension in the string is F and its mass per unit length is ρ, then
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c2 = F/ρ.

The kinetic energy of the string is

T =
1
2
ρ

∫ 1

0

(
∂u

∂t

)2

dx

and the potential energy in the string is

V =
1
2
ρ

∫ 1

0

c2

(
∂u

∂x

)2

dx.

Thus the functional is given by

(2.75) I[u] =
∫ t0

0

∫ 1

0

{
c2

(
∂u

∂x

)2

−
(

∂u

∂t

)2
}

dx dt.

The factor 1
2ρ has no influence on the function u0 which makes I[u] stationary,

and has thus been removed from the functional.
The major drawback in the use of Hamilton’s principle is that the operator

L ≡ ∂2

∂x2
− 1

c2

∂2

∂t2

is hyperbolic and is not positive definite. The solution u0 of Lu = 0 does not
yield an extremum for the functional (2.75); it gives only a stationary value. This
means that numerical algorithms based on this functional cannot be guaranteed
to converge as was the case for the positive definite operators associated with
elliptic problems in Section 2.7. This is true in general for initial-value problems;
there are no extremal variational principles; however, they may still be used to
develop approximate methods.

Now, to find a stationary value for eqn (2.75), the trial functions must satisfy
essential conditions on the boundary of the region in xt space. These conditions
are of the form given by eqn (2.71), (2.72) and (2.73) together with

u(x, t0) = h(x),

where t0 is some arbitrary fixed time.
However, for properly posed hyperbolic problems, only initial values in time,

such as eqn (2.74), are given; h(x) is not known. Noble (1973) proposed that the
functional be used assuming that h(x) is known and then, at the end, the initial
condition (2.74) be used to eliminate the unknown function. He also gave the
following functional for the wave equation (2.70):

I[u] =
∫ t0

0

∫ 1

0

(
c2 ∂v

∂x

∂u

∂x
− ∂v

∂t

∂u

∂t

)
dx dt − 2

∫ 1

0

g(x)u(x, t0) dx,
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where v(x, t) = u(x, t0 − t). All trial functions must satisfy the essential condi-
tions (2.71), (2.72) and (2.73). The second initial condition (2.74) is taken into
account in the functional itself, and it is not necessary to assume that u(x, t0) is
known.

Finally, for the diffusion equation

∂2u

∂x2
=

1
α

∂u

∂t
, 0 < x < 1, t > 0,

subject to the boundary conditions

u(0, t) = u(1, t) = 0

and the initial condition

u(x, 0) = f(x),

Noble (1973) gave the functional

(2.76) I[u] =
∫ t0

0

∫ 1

0

(
α

∂v

∂x

∂u

∂x
+ v

∂u

∂t

)
dx dt −

∫ 1

0

f(x)u(x, t0) dx,

where again v(x, t) = u(x, t0 − t) and the trial functions must satisfy the essential
Dirichlet boundary conditions.

The application of the functionals presented in this section for the numerical
solution of the wave and diffusion equations will be discussed in Section 5.4.

2.10 Exercises and solutions

Exercise 2.1 L is the Helmholtz operator ∇2 + k2. Show that L is self-adjoint.

Exercise 2.2 Show that, in certain circumstances, the linear second-order par-
tial differential operator L in two independent variables may be given by the
expression

Lu = −div(κ gradu) + ρu,

where

κ =
[

κxx κxy

κyx κyy

]
.

Show that the first form of Green’s theorem may be generalized to give eqn (2.42)
and that if κ is symmetric, the second form is given by eqn (2.43).
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Exercise 2.3 For the two-point boundary-value problem

−u′′ = x2, 0 < x < 1,

u(0) = u(1) = 0,

use the collocation method at the points x = 1
4 , 1

2 , 3
4 with the trial function

ũ2(x) = x(1 − x)(c0 + c1x + c2x
2).

Compare with the exact solution given in Example 2.3 and comment on the
result.

Exercise 2.4 Consider the two-point boundary-value problem

−u′′ = cosh x,

u(0) = u(1) = 0,

where we seek an approximate solution of the form

ũ4 = x(1 − x)(c0 + c1x + c2x
2 + c3x

3 + c4x
4),

with the exact solution u = 1 + (cosh 1 − 1)x − cosh x.
Use the collocation method at the five points

x = 0.1, 0.3, 0.5, 0.7, 0.9

and overdetermined collocation at the nine points

x = 0.1, 0.2, . . . , 0.9

to find ũ4. Compare the results with the exact solution.

Exercise 2.5 For the two-point boundary-value problem

u′′ = ex, 0 < x < 1,

u(0) = u(1) = 0,

use the Rayleigh–Ritz method with the two trial functions

ũA = x(1 − x)c0 + c1x and ũB = x(ex − e).

Compare the results with the exact solution.

Exercise 2.6 Use the Rayleigh–Ritz method to solve the two-point boundary-
value problem

−u′′ = x2, 0 < x < 1,

u(0) = u′(1) = 0,
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using (i) a trial function ũA(x) = c0x(1 − x/2) which satisfies both boundary
conditions, and (ii) a trial function ũB = c0x + c1x

2 in which only the Dirich-
let boundary condition is enforced, the Neumann boundary condition being a
natural boundary condition.

Compare the results with the exact solution.

Exercise 2.7 Find approximate solutions of the form x(1 − x)(c0 + c1x) to the
two-point boundary-value problem

−(1 + x)u′′ − u′ = x, 0 < x < 1,

u(0) = u(1) = 0,

using the collocation, overdetermined collocation, least-squares, Galerkin and
Rayleigh–Ritz methods. Compare the results with the exact solution.

Exercise 2.8 Solve the two-point boundary-value problem

−u′′ = x2, 0 < x < 1,

u(0) = 1, u′(1) + 2u(1) = 1,

using both the Galerkin and the Rayleigh–Ritz methods with quadratic trial
functions. Compare the results with the exact solution.

Exercise 2.9 Show that with the notation of Section 2.4,

grad Δw · grad w =
1
2
Δ | grad w |2 .

Exercise 2.10 Equation (2.27) gives the functional

I [w] =
∫ ∫

D

{(
∂w

∂x

)2

+
(

∂w

∂y

)2

− 2p

T
w

}
dx dy +

∫
C3

σw2 ds,

where w satisfies the Robin boundary condition ∂w/∂n + σ(s)w = 0 on C3, and
homogeneous Dirichlet and Neumann conditions on C1 and C2 respectively. Use
the first form of Green’s theorem to show that I[w] may be given by eqn (2.28)

Exercise 2.11 Show that the boundary condition (2.41) is a natural boundary
condition for the functional (2.44).

Exercise 2.12 Consider the functional (Hazel and Wexler 1972)

I[u] =
∫ ∫

D

{| gradu |2 −2uf
}

dx dy +
∫

C1

2(g − u)
∂u

∂n
ds +

∫
C2

(σu2 − 2hu) ds,

in which the Dirichlet boundary condition u = g holds on C1 and the Robin
boundary condition ∂u/∂n + σu = h holds on C2. Show that both the Robin
and the Dirichlet boundary conditions are natural conditions for this functional,
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but that the functional is not necessarily minimized by the solution u0 of the
corresponding boundary-value problem.

Exercise 2.13 Given the two-point boundary-value problem

−u′′ = 2, 0 < x < 1,

u(0) = u′(1) = 0,

show that the exact solution is u0 = 2x − x2. Find I[u0], where I[u] is given by
eqn (2.29), and verify that I[u0] < I[ũ] for a choice of various trial functions ũ

which satisfy the boundary conditions.

Exercise 2.14 Consider Poisson’s equation

−∇2u = f in D

with boundary conditions

u = g(s) on C1

and

∂u

∂n
+ σ(s)u = h(s) on C2.

Show that the Galerkin and Rayleigh–Ritz methods yield the same approximate
solution.

Exercise 2.15 Consider Poisson’s equation,

−∇2u = 2(x + y) − 4,

in the square whose vertices are at the points (0, 0), (1, 0), (1, 1), (0, 1). The
boundary conditions are

u(0, y) = y2, u(x, 0) = x2,

∂u

∂x
(1, y) = 2 − 2y − y2,

∂u

∂y
(x, 1) = 2 − x − x2.

Solve the boundary-value problem using trial functions of the form

ũA = x2 + y2 + c0xy,

ũB = x2 + y2 + c0xy + c1xy(x + y).

Exercise 2.16 For a beam on an elastic foundation, simply supported at its ends,
show that the corresponding functional is given by

(2.77) I[u] =
∫ 1

0

{
ku2 + EI(u′′)2 + 2uf

}
dx,
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where EI is the flexural rigidity of the beam, k is the stiffness of the foundation
and f is the loading per unit length.

The corresponding differential equation is

EIuiv + ku = −f.

There are four boundary conditions: the fixed-end conditions u(0) = u(l) = 0,
which are essential boundary conditions, and zero bending moment at the ends
gives u′′(0) = u′′(l) = 0, which are natural boundary conditions.

Solution 2.1

∫ ∫
D

vLu dx dy −
∫ ∫

D

uLv dx dy

=
∫ ∫

D

v(∇2 + k2)u dx dy −
∫ ∫

D

u(∇2 + k2)v dx dy

=
∫ ∫

D

(v ∇2u − u ∇2v) dx dy

=
∫

C

(
v
∂u

∂n
− u

∂v

∂n

)
ds,

using the second form of Green’s theorem. Thus L is self-adjoint.

Solution 2.2 The general linear second-order partial differential operator in two
independent variables is

(2.78) L ≡ a
∂2

∂x2
+ b

∂2

∂x∂y
+ c

∂2

∂y2
+ d

∂

∂x
+ e

∂

∂y
+ f,

where the coefficients a, . . . , f are functions of x and y. Now,

−div(κ grad u) + ρu

= −div
[
κxx

∂u

∂x
+ κxy

∂u

∂y
κyx

∂u

∂x
+ κyy

∂u

∂y

]T

+ ρu

= −κxx
∂2u

∂x2
− (κxy + κyx)

∂2u

∂x∂y

−κyy
∂2u

∂y2
−

(
∂κxx

∂x
+

∂κyx

∂y

)
∂u

∂x

−
(

∂κxy

∂x
+

∂κyy

∂y

)
∂u

∂y
+ ρu.
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Thus, provided κxx, κxy, κyx, κyy and ρ may be chosen such that

κxx = −a, κyy = −c, ρ = f, κxy + κyx = −b,

∂κxx

∂x
+

∂κyx

∂y
= −d and

∂κxy

∂x
+

∂κyy

∂y
= −e,

the general operator L in eqn (2.78) is given by the expression

Lu = −div(κ grad u) + ρu.

In some cases where the coefficients do not satisfy these conditions, an
‘integrating factor’, μ, may be found. This is such that when the original equation
is multiplied by μ, the resulting coefficients do satisfy the required condition
(Ames 1972).

To obtain the generalization of Green’s theorem, consider the identity

div(uκ grad v) = gradu · (κ grad v) + u div(κ grad v).

Integrating over the region D and using the divergence theorem gives

∮
C

u(κ grad v) · n ds =
∫ ∫

D

grad u · (κ grad v)dx dy

+
∫ ∫

D

u div(κ grad v)dx dy,

which is the generalization of the first form of Green’s theorem, eqn (2.42).
Interchange u and v and subtract to obtain

∮
C

{u(κ grad v) · n − v(κ grad u) · n}ds

=
∫ ∫

D

{u div(κ grad v) − v div(κ grad u)} dx dy

+
∫ ∫

D

{grad u · (κ grad v) − grad v · (κ grad u)} dx dy.

Now, if κ is symmetric, then the second integral on the right-hand side is zero,
so that the second form of Green’s theorem is given by eqn (2.43).

Solution 2.3 The residual is

r(ũ2) = 2c0 + (6x − 2)c1 + (12x2 − 6x)c2 − x2,
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so that, using the notation of eqn (2.9) and the results of Example 2.4,

A00 = A10 = A20 = 2, h0 = 1
12 ,

A01 = −1
2
, A11 = 1, A21 =

5
2
, h1 = 1

4 ,

A02 = −3
4
, A12 = 0, A22 =

9
4
, h2 = 9

16 .

So, the collocation equations are⎡
⎢⎣

2 − 1
2 − 3

4

2 1 0

2 5
2

9
4

⎤
⎥⎦

⎡
⎢⎣

c0

c1

c2

⎤
⎥⎦ =

⎡
⎢⎣

1
16

1
4

9
16

⎤
⎥⎦,

which yield the values c0 = c1 = c2 = 1
12 .

Thus the approximate solution is

ũ2(x) = x(1 − x)
1
12

(1 + x + x2)

=
1
12

x(1 − x3).

The exact solution is u0(x) = 1
12x(1 − x3), so that the approximate solution is

identical to the exact solution. This is to be expected, since the exact solution is
contained amongst all possible functions of the form x(1 − x)(c0 + c1x + c2x

2),
from which the trial function is chosen.

Solution 2.4 The residual is

r(ũ4) = 2c0 + (6x − 2)c1 + (12x2 − 6x)c2 + (20x3 − 12x2)c3

+(30x4 − 20x3)c4 − cosh x.

Collocating at 0.1, 0.3, 0.5, 0.7, 0.9 and using overdetermined collocation at the
points 0.1, 0.2, . . . , 0.9 yields the following values for the coefficients c0, . . . , c4:

0.543082, 0.043065, 0.043164, 0.001233, 0.001577,

0.543082, 0.043062, 0.043165, 0.001223, 0.001579.

The corresponding approximate solutions are almost identical and compare
very well with the exact solution, as shown in Fig. 2.8.

Solution 2.5 For the trial function ũA, the Rayleigh–Ritz coefficient matrix is
given in Example 2.12:∫ 1

0

(x − x2)exdx = 1 − e,

∫ 1

0

(x2 − x3)exdx = 3e − 8.
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Exact
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Overdetermined collocation

Fig. 2.8 A comparison of ũc
4 and ũoc

4 with the exact solution for Exercise 2.4.

Thus the Rayleigh–Ritz equations are[
1
3

1
6

1
6

1
3

][
a

b

]
=

[
1 − e

3e − 8

]
,

which yield a = −15.283, b = 20.258.
Thus ũA(x) = x(1 − x)(−15.283 + 20.258x).
For the trial function ũB(x) = ax(ex − e),

A11 =
∫ 1

0

{
e2x(1 + 2x + x2) − eex(1 + x) + e2

}
dx = (5e2 − 1)/4,

h1 =
∫ 1

0

exx(ex − e)dx = (e2 + 1 − 4e)/4.

Thus

a = (e2 + 1 − 4e)/(5e2 − 1) = −0.0691,

so that

ũB(x) = 0.0691x(e − ex).

The two solutions are compared in Table 2.5 with the exact solution

u0(x) = 1 + (e − 1)x − ex.
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Table 2.5 Comparison of the two approximate
solutions ũA and ũB with the exact solution u
for Exercise 2.5

x 0 0.25 0.5 0.75 1

u0 0 0.146 0.210 0.172 0
ũA 0 −1.916 −1.288 −0.168 0
ũB 0 0.025 0.037 0.031 0

Note that ũA is extremely inaccurate. ũB , which incorporates the transcen-
dental function ex, is an improvement but is still completely unsatisfactory. In
Exercise 3.5, the same problem is solved using the finite element method, and a
comparison of the solutions is given in Fig. 3.36.

Solution 2.6 The Rayleigh–Ritz equations are as follows.

(i)

A00c0 = h0,

where

A00 =
∫ 1

0

(1 − x)2 dx =
1
3
, h0 =

∫ 1

0

x2

(
x − x2

2

)
dx =

3
20

;

thus

c0 =
9
20

and ũA(x) =
9
20

x
(
1 − x

2

)
.

(ii)

A00 =
∫ 1

0

12 dx = 1, A01 = A10 =
∫ 1

0

x2x2 dx =
1
5
,

A11 =
∫ 1

0

(2x)2 dx =
4
3
,

h0 =
∫ 1

0

x2x dx =
1
4
, h1 =

∫ 1

0

x2x2dx =
1
5
.

Thus the Rayleigh–Ritz equations are[
1 1

1 4
3

][
c0

c1

]
=

[
1
4

1
5

]
,
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Fig. 2.9 Rayleigh–Ritz solutions for the two approximations in Exercise 2.6.

which yields c0 = 2
5 , c1 = − 3

20 , so that ũB(x) = 1
20x(8 − 3x). The exact solution

is u0(x) = 1
20x(4 − x3), and the results are compared in Fig. 2.9.

From Fig. 2.9, it is seen that ũB is the better approximation, which illus-
trates that it is better not to enforce natural boundary conditions but to retain
as many variational parameters as possible in the trial function. ũ′

B(1) = 0.1, so
that the natural boundary condition is reasonably well satisfield.

Solution 2.7 The differential equation may be written in self-adjoint form as

− d

dx

(
(1 + x)

du

dx

)
= x.

Collocation at x = 1
3 , x = 2

3 . The residual is c0(1 + 4x) + c1(−2 + 2x +
9x2) − x; thus the equations are

[
7
3 − 1

3

11
3

10
3

][
c0

c1

]
=

[
1
3

2
3

]
,

which give c0 = 4
27 , c1 = 1

27 .
Thus the collocation approximation is

ũA(x) = x(1 − x)(0.148 + 0.037x).
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Collocation at x = 1
4 , x = 1

2 , x = 3
4 leads to the overdetermined set

⎡
⎢⎣

2 − 5
16

3 5
4

4 73
16

⎤
⎥⎦

[
c0

c1

]
=

⎡
⎢⎣

1
4

1
2

3
4

⎤
⎥⎦.

The method of least squares is used to solve this set, giving[
29 20.125

20.125 23.258

][
c0

c1

]
=

[
5

3.813

]
,

which yields c0 = 0.147, c2 = 0.0369.
Thus the overdetermined collocation approximation is

ũB(x) = x(1 − x)(0.147 + 0.0369x).

Least squares method.

A00 =
∫ 1

0

(1 + 4x)2dx =
31
3

,

A01 = A10 =
∫ 1

0

(1 + 4x)(−2 + 2x + 9x2)dx =
29
3

,

A11 =
∫ 1

0

(−2 + 2x + 9x2)dx =
218
15

,

h0 =
∫ 1

0

x(1 + 4x)dx =
11
6

,

h1 =
∫ 1

0

x(−2 + 2x + 9x2)dx =
23
12

.

Thus [
31
3

29
3

29
3

218
15

][
c0

c1

]
=

[
11
6

23
12

]
,

which gives c0 = 0.143, c1 = 0.0367.
Thus the least squares approximation is

ũC(x) = x(1 − x)(0.143 + 0.0367x).
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Galerkin method.

A00 = −
∫ 1

0

(x − x2)
∂

∂x
{(1 + x)(1 − 2x)} dx =

1
2
,

A01 = A10 = −
∫ 1

0

(x2 − x3)
∂

∂x
{(1 + x)(2 − 2x)} dx =

17
60

,

A11 = −
∫ 1

0

(x2 − x3)
∂

∂x

{
(1 + x)(2x − 3x2)

}
dx =

7
30

,

h0 =
∫ 1

0

xx(1 − x) dx =
1
12

,

h1 =
∫ 1

0

xx2(1 − x) dx =
1
20

.

Thus the Galerkin equations are[
1
2

17
60

17
60

7
30

][
c0

c1

]
=

[
1
12

1
20

]
,

which give c0 = 0.145, c1 = 0.0382 and the Galerkin approximation is

ũD(x) = x(1 − x)(0.145 + 0.382x).

Rayleigh–Ritz method.

A00 =
∫ 1

0

(1 + x)(1 − 2x)2dx =
1
2
,

A01 = A10 =
∫ 1

0

(1 + x)(1 − 2x)(2x − 3x2) dx =
17
60

,

A11 =
∫ 1

0

(1 + x)(2x − 3x2)2dx =
7
30

,

h0 =
∫ 1

0

xx(1 − x) dx =
1
12

,

h1 =
∫ 1

0

xx2(1 − x) dx =
1
20

.
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Table 2.6 Comparison of the approximate solutions (×102) with
the exact solution (×102) for Exercise 2.7

x 0 0.2 0.4 0.6 0.8 1

Galerkin
Rayleigh–Ritz

}
0 2.443 3.847 4.031 2.809 0

Collocation 0 2.489 3.911 4.089 2.844 0
Overdetermined collocation 0 2.467 3.878 4.055 2.821 0
Least squares 0 2.407 3.786 3.962 2.759 0
Exact solution 0 2.424 3.864 4.048 2.800 0

Thus the Rayleigh–Ritz solution is identical with the Galerkin solution.
The exact solution is

u0(x) = −x2

4
+

x

2
− ln(1 + x)

4 ln 2
,

and a comparison of the results is given in Table 2.6.

Solution 2.8 A quadratic trial function which satisfies the essential boundary
condition is

ũ2(x) = 1 + c1x + c2x
2.

Galerkin method. Equation (2.20) gives

∫ 1

0

{
(c1 + 2c2x)1 − x2x

}
dx +

[{
2(1 + c1x + c2x

2) − 1
}

x
]
x=1

= 0

and

∫ 1

0

{
(c1 + 2c2x)2x − x2x2

}
dx +

[{
2(1 + c1x + c2x

2) − 1
}

x2
]
x=1

= 0.

Thus the Galerkin equations are

[
3 3

3 10
3

][
c1

c2

]
=

[
− 3

4

− 4
5

]
,

which give

c1 = − 1
10

, c2 = − 3
20

.
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Rayleigh–Ritz method. With the notation of Section 2.7, the coefficients
Aij (i = 0, 1; j = 0, 1, 2) are given in Example 2.13.

S11 =
[
2x2

]
x=1

= 2, S12 = S21 =
[
2x3

]
x=1

= 2,

S13 = [2x1]x=1 = 2, S22 =
[
2x4

]
x=1

= 2,

S23 =
[
2x21

]
x=1

= 2,

h1 =
∫ 1

0

x2x dx =
1
4
, h2 =

∫ 1

0

x2x2 dx = 1
5 ,

k1 = [x1]x=1 = 1, k2 =
[
x21

]
x=1

= 1.

Thus eqn (2.53) gives

[
1 + 2 1 + 2

1 + 2 4
3 + 2

][
c1

c2

]
=

[
1
4 + 1 − (0 + 2)
1
5 + 1 − (0 + 2)

]
,

which is the same system as for the Galerkin method, i.e. in both cases the
system of equations is the same, with the solution c1 = − 1

10 , c2 = − 3
20 . Hence

the Galerkin and Rayleigh–Ritz quadratic approximations are given by

u2(x) = 1 − 1
10

x − 3
20

x2.

The exact solution is u0(x) = 1 − 1
6x − 1

12x4, and this is compared with the
approximate solution in Table 2.7. Also,

ũ′
2(1) + 2ũ2(1) = 1.1,

so that the natural Robin condition is satisfied reasonably well.

Table 2.7 Comparison of the approximate solutions with
the exact solution for Exercise 2.8

x 0 0.2 0.4 0.6 0.8 1

Galerkin
Rayleigh–Ritz

}
1 0.974 0.936 0.886 0.824 0.75

Exact solution 1 0.967 0.931 0.889 0.833 0.75
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Solution 2.9

grad Δw =
[

∂

∂x
(Δw)

∂

∂y
(Δw)

]T

=
[
Δ

(
∂w

∂x

)
Δ

(
∂w

∂y

)]T

= Δ(grad w).

Thus

grad Δw · grad w = Δ(grad w) · gradw

=
[

∂

∂x

(
∂w

∂x

)
Δx +

∂

∂y

(
∂w

∂x

)
Δy

∂

∂x

(
∂w

∂y

)
Δx +

∂

∂y

(
∂w

∂y

)
Δy

]⎡
⎢⎢⎣

∂w

∂x
∂w

∂y

⎤
⎥⎥⎦

=
{

∂

∂x

(
∂w

∂x

)
∂w

∂x
+

∂

∂x

(
∂w

∂y

)
∂w

∂y

}
Δx

+
{

∂

∂y

(
∂w

∂x

)
∂w

∂x
+

∂

∂y

(
∂w

∂y

)
∂w

∂y

}
Δy

=
1
2

∂

∂x
| gradw |2 Δx +

1
2

∂

∂y
| gradw |2 Δy

=
1
2
Δ | gradw |2.

Solution 2.10

I[w] =
∫ ∫

D

{
gradw · gradw − 2p

T
w

}
dx dy +

∫
C3

σw2 ds

=
∫ ∫

D

(−w ∇2w) dx dy +
∮

C

w
∂w

∂n
ds

−
∫ ∫

D

2p

T
w dx dy +

∫
C3

σw2 ds

=
∫ ∫

D

{
w(−∇2w) − 2p

T
w

}
dx dy

+
∫

C3

w

(
∂w

∂n
+ σw

)
ds,

since ∫
C1

w
∂w

∂n
ds =

∫
C2

w
∂w

∂n
ds = 0.
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Thus

I[w] =
∫ ∫

D

{
w(−∇2w) − 2ρ

T
w

}
dx dy,

since

∂w

∂n
+ σw = 0 on C3.

Solution 2.11 Suppose that u0 is the solution of Lu = f , subject to the Robin
boundary conditions (2.41) and the Dirichlet boundary condition u = g(s) on
C1. Consider variations about u0 given by

ũ = u0 + αv.

Then

dI

dα

∣∣∣∣
α=0

=
∫ ∫

D

{2 grad v · (κ gradu0) + 2ρvu0 − 2vf} dx dy

+
∫

C2

(2σvu0 − 2hv) ds

= 0 at the stationary point of I.

Thus, using the first form of Green’s theorem, eqn (2.42),∫ ∫
D

v {−div(κ gradu0) + ρu0 − f} dx dy

+
∫

C1

v(κ gradu0) · n ds +
∫

C2

v(σu0 − h) ds = 0,

i.e. ∫ ∫
D

v {−div(κ gradu0) + ρu0 − f} dx dy

+
∫

C1

v(κ gradu0) · n ds +
∫

C2

v(κ gradu0) · n + σu0 − h)ds = 0.

Each term vanishes separately, since u0 satisfies Lu = f and the boundary con-
dition (2.41), and v must satisfy the homogeneous Dirichlet condition v = 0 on
C1, in order that the trial function ũ satisfies the non-homogeneous condition on
C1. Thus the condition (2.41) is a natural boundary condition for the functional
(2.44).

Solution 2.12 Consider variations about u0 given by

ũ = u0 + αv.
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Then

dI

dα
=

∫ ∫
D

{2 grad(u0 + αv) · grad v − 2vf} dx dy

+
∫

C1

2
{

(g − u0)
∂v

∂n
− v

∂u0

∂n
− 2αv

∂v

∂n

}
ds

+
∫

C2

{2σv(u0 + αv) − 2hv} ds.

Thus, using the first form of Green’s theorem,

1
2

dI

dα
= −

∫ ∫
D

v
{∇2(u0 + αv) + f

}
dx dy

+
∮

C

{
(g − u0)

∂v

∂n
− αv

∂v

∂n

}
ds

+
∫

C2

{
v

(
∂u0

∂n
+ σu0 − h

)
+ α

(
σv2 + v

∂v

∂n

)}
ds.

Now a stationary point for I is given by (dI/dα) |α=0; thus

−
∫ ∫

D

v
(∇2u0 + f

)
dx dy +

∫
C1

(g − u0)
∂v

∂n
ds +

∫
C2

v

(
∂u0

∂n
+ σu0 − h

)
ds = 0.

Since v, and hence ∂v/∂n, is arbitrary, it follows that

−∇2u0 = f in D,

u0 = g on C1

and

∂u0

∂n
+ σu0 = h on C2,

i.e. both the Robin and the Dirichlet boundary conditions are natural boundary
conditions for I.

d2I

dα2

∣∣∣∣
α=0

=
∫ ∫

D

2 | grad v |2 dx dy −
∫

C1

4v
∂v

∂n
ds +

∫
C2

2σv2 ds.

Now, in general, it is not true that − ∫
C1

4v ∂v
∂nds ≥ 0, i.e., for some choice of v,

(d2I/dα2) |α=0< 0, so that the stationary point is not necessarily a minimum.
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Solution 2.13 The general solution is u(x) = A + Bx − x2 : u(0) = 0 gives
A = 0, and u′(1) = 0 gives B = 2, so that u0(x) = 2x − x2.

I[u0] =
∫ 1

0

{u0 (−u′′
0) − 2u02} dx

=
∫ 1

0

−2u0 dx

= −4
3
.

The simplest function which satisfies the boundary conditions is

ũ(x) ≡ 0, I[ũ0] = 0.

A quadratic function which satisfies both boundary conditions is

ũ2(x) = x − 1
2
x2, I[ũ2] = −1.

The function ũs(x) = sin(πx/2) satisfies both boundary conditions:

I[ũs] = π3/8 − 8/π = 1.329.

Clearly,

I[u0] < I[ũ1] < I[ũ2] < I[ũs].

Solution 2.14 Take trial functions as given by eqn (2.50),

ũn = g +
n∑

i=1

civi,

where vi = 0 on C1, so that ũn satisfies the essential boundary condition.
In Section 2.7, the Rayleigh–Ritz method was shown to yield the algebraic

equations

Bc = g

for the unknown coefficients ci, where

Bij =
∫ ∫

D

grad vi · grad vj dx dy +
∫

C2

σvivj ds,

gi =
∫ ∫

D

fvi dx dy +
∫

C2

hvi ds −
∫ ∫

D

grad vi · grad g ds −
∫

C2

σvig ds.
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The Galerkin method is expressed by eqn (2.23), which gives, on substitution of
the trial function ũn,

∫ ∫
D

⎧⎨
⎩

⎛
⎝∂g

∂x
+

∑
j

cj
∂vj

∂x

⎞
⎠ ∂vi

∂x
+

⎛
⎝∂g

∂y
+

∑
j

cj
∂vj

∂y

⎞
⎠ ∂vi

∂y
− fvi

⎫⎬
⎭ dx dy

+
∫

C2

⎧⎨
⎩σ

⎛
⎝g +

∑
j

cjvj

⎞
⎠− h

⎫⎬
⎭ vi ds = 0, i = 0, . . . , n,

i.e.

n∑
i=0

Bijci = gi, i = 0, . . . , n,

where the coefficients Bij and gi are identical with those obtained from the
Rayleigh–Ritz method, i.e. the two methods yield the same approximate solution.

Solution 2.15 Rayleigh–Ritz method.

A00 =
∫ 1

0

∫ 1

0

(y2 + x2) dx dy =
2
3
,

A01 = A10 =
∫ 1

0

∫ 1

0

{
y(2xy + y2) + x(x2 + 2xy)

}
dx dy =

7
6
,

A11 =
∫ 1

0

∫ 1

0

{
(2xy + y2)2 + (x2 + 2xy)2

}
dx dy =

103
45

,

A02 =
∫ 1

0

∫ 1

0

(y2x + 2yx) dx dy = 1,

A12 =
∫ 1

0

∫ 1

0

{
(2xy + y2)2x + (x2 + 2xy)2y

}
dx dy = 2,

Sij = 0 (i = 0, 1, 2; j = 0, 1, 2, 3),

h0 =
∫ 1

0

∫ 1

0

{2(x + y) − 4}xy dx dy = −1
3
,

h1 =
∫ 1

0

∫ 1

0

{2(x + y) − 4}xy(x + y) dx dy = − 7
18

,

k0 =
∫ 1

0

1y(2 − 2y − y2) dy +
∫ 1

0

1x(2 − 2x − x2)(−dx) =
1
6
,

k1 =
∫ 1

0

1y(1 + y)(2 − 2y − y2) dy +
∫ 1

0

1x(2 − 2x − x2)(−dx) =
1
10

.
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Thus, for the trial function ũA, we have

2
3
c0 = −1

3
+

1
6
− 1,

i.e.

c0 = −7
4
,

so that

ũA(x, y) = x2 + y2 − 7
4
xy.

For the trial function ũB , we have[
2
3

7
6

7
6

103
45

][
c1

c2

]
=

[
− 1

3 + 1
6 − 1

− 7
18 + 1

10 − 2

]
,

which yields c0 = 0, c1 = −1. Thus

ũB(x, y) = x2 + y2 − xy(x + y).

Galerkin method.∫ 1

0

∫ 1

0

{
2x + c0y + c1(2xy + y2)

}
dx dy

+
∫ 1

0

∫ 1

0

{
2y + c0x + c1(x2 + 2xy)

}
x dx dy

−
∫ 1

0

∫ 1

0

{2(x + y) − 4}xy dx dy

−
{∫ 1

0

(2 − 2y − y2)1y dy +
∫ 1

0

(2 − 2x − x2)1x(−dx)
}

= 0,

∫ 1

0

∫ 1

0

{
2x + c0y + c1(2xy + y2)

}
(2xy + y2) dx dy

+
∫ 1

0

∫ 1

0

{
2y + c0x + c1(x2 + 2xy)

}
(x2 + 2xy) dx dy

−
∫ 1

0

∫ 1

0

{2(x + y) − 4}xy(x + y) dx dy

−
{∫ 1

0

(2 − 2y − y2)1y(1 + y) dy

+
∫ 1

0

(2 − 2x − x2)1x(1 + x)(−dx)
}

= 0.



70 The Finite Element Method

Thus [
1

2

]
+

[
2
3

7
6

7
6

103
45

][
c0

c1

]
−

[
− 1

3

− 7
18

]
−

[
1
6

1
10

]
=

[
0

0

]
,

i.e. the Rayleigh–Ritz equations are identical with the Galerkin equations and
thus yield the same approximate solutions ũA and ũB , as expected.

Notice that ũB is in fact the exact solution, and the reason that it is
recovered is that the exact solution is a linear combination of the chosen basis
functions, just as in Exercise 2.3.

Solution 2.16 The required functional is given by eqn (2.65), where

u = [u] and f = [−f ].

The strain energy density comprises two terms, one due to the elastic foundation
and the other due to the bending of the beam. These give

W =
1
2
ku2 +

1
2
EI(u′′)2.

Thus

I[u] =
1
2

∫ 1

0

{
ku2 + EI(u′′)2 + 2uf

}
dx.

The factor 1
2 does not affect the function u0 which minimizes I, and may thus

be disregarded; I is then given by eqn (2.77).



3 The finite element method
for elliptic problems

3.1 Difficulties associated with the application of weighted
residual methods

Although the weighted residual methods introduced in Chapter 2 have been
used with success in many areas of physics and engineering, there are certain
difficulties which prevent them being more widely used for the solution of
practical problems.

One obvious problem involves the choice of trial functions. It is clear that
for an irregular-shaped boundary, such as in Fig. 3.1, it would in general be
impossible to find one function, let alone a sequence of functions, which satisfies
every essential boundary condition. Thus, immediately, the class of problems
amenable to solution by this method is restricted to those problems with a
‘simple’ geometry.

Even if the geometry is suitable and a sequence of functions satisying essen-
tial boundary conditions is available, these functions are usually polynomials. It
is not difficult to appreciate that, in general, very high-order polynomials would
be required to approach the exact behaviour of the unknown over the whole
region. A worse situation than this, however, concerns the case of discontinuous
material properties.

k2(x; y)

nk1(x; y)

x

y

Fig. 3.1 A general curved region in two dimensions in which there is an interface between
differing media.
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Consider, for example, Poisson’s equation

(3.1) −div(k grad u) = f(x, y),

where k(x, y) is a function of position which is discontinuous across some interface
in the region of interest; see Fig. 3.1. We shall refer to equations such as this as
Poisson’s equation. Strictly speaking, Poisson’s equation is −∇2u = f , i.e. k = 1.
Such a situation arises in electromagnetic theory at the junction of two dielectrics
with different permittivities. In these cases ∂u/∂n, the normal derivative of
u, would be discontinuous across the interface and polynomials, which are
continuously differentiable, would not be suitable for accurate description of this
situation.

In weighted residual methods, all parts of the region are treated with the
same degree of importance, no undue attention being paid to areas which may
in fact be of more interest than the rest.

Finally, weighted residual methods include coupling between points which
are distant from one another, even though this coupling is weak. This yields
dense matrices in the final analysis and is costly in terms of computer storage.

In this chapter, the ideas behind the weighted residual method are extended
so that the above-mentioned difficulties may be overcome. In fact, we shall
restrict ourselves to the Galerkin approach; the use of a variational approach
will be discussed in Chapter 5.

Our examples in Chapter 2 suggest that the Galerkin approach is the
most accurate in some sense. However, the importance of the method will be
appreciated when we reach Chapters 5 and 7, where we shall see that it yields
exactly the same equations as does the variational method and hence we can
make specific statements about convergence and accuracy.

3.2 Piecewise application of the Galerkin method

We consider an approach in which the region of interest is subdivided into a
finite set of elements, connected together at a set of points called the nodes. In
each of these elements, the function behaviour is considered individually and
then an overall set of equations is assembled from the individual components.
These individual components are found by a piecewise application of the Galerkin
method.

The distinction between element numbering and nodal numbering can some-
times lead to confusion, and there is no generally accepted notation. We shall
adopt the following: subscripts will refer to nodal numbers and superscripts to
element numbers; where it is important to distinguish between them, we shall
write i for ‘node i’ and [i] for ‘element i’.
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Actual boundary

Approximate boundary

A

Typical element

Typical node

i
[e]

Fig. 3.2 Finite element idealization of a two-dimensional region using triangular ele-
ments, with a fine mesh-grading in the region of node A.

We can see that the difficulties encountered in the pure Galerkin approach
are now overcome. Since the boundary geometry may be approximated as closely
as required by a polygonal arc, or by polyhedra in three dimensions, even the
most irregular boundaries are easily approximated; see Fig. 3.2. In Chapter 4,
it will be shown how to use curved elements and get an even better boundary
approximation. In the examples that follow, it will be seen that the enforcement
of essential boundary conditions presents no problems. Because the trial func-
tions are defined in a piecewise manner, discontinuities in normal derivatives
over interfaces between different media are easily accounted for and relatively
low-degree polynomials may be used to obtain suitable accuracy throughout
the region; see Fig. 3.3. Also, grading of the finite element mesh may be used
to concentrate on regions of specific interest; see Fig. 3.2 again. Finally, the
piecewise nature of the application of the Galerkin method ensures that the
influence of one element is limited to those elements actually connected to it,
thus uncoupling remote regions. This yields sparse matrices when the overall
system of equations is assembled, and hence the computational advantages of
sparse matrices become available.

3.3 Terminology

The solution of boundary-value problems such as that given by eqns (2.1) and
(2.39) frequently represents a quantity associated with a scalar field such as a
potential. Consequently, we often refer to such problems as field problems.
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x

u(x)
Exact solution
Finite element

Fig. 3.3 Hypothetical finite element approximation to the solution of a two-point
boundary-value problem using linear trial functions.

Because the finite element method was developed in its computational
form by structural engineers (Argyris 1964, Zienkiewicz and Cheung 1965), the
structural terminology has remained in the generalization to field problems. In
Section 3.6 we shall develop equations of the form

KU = F,

where U is a vector of nodal variables, i.e. values of u, ∂u/∂x, ∂u/∂y etc., eval-
uated at the nodes. The number of nodal variables associated with a particular
node is often called the number of degrees of freedom at that node. ue is the vector
of element nodal variables. K and F are called the overall stiffness matrix and
the overall force vector, respectively, and are assembled from element matrices
ke and fe.

fe is a column vector of known quantities obtained from the non-
homogeneous terms in the boundary-value problem under consideration. F is
the column vector of known quantities for the overall system. fe is called the
element force vector, and ke is called the element stiffness matrix.

In some problems the field variables, q, are related to the potential function,
u, by equations such as

q = −grad u.

These relationships then yield, after the finite element analysis, equations of the
form

q = SU.
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S is called the overall stress matrix.
In recent years, some of the structural terminology has been lost and the

matrices K and F are referred to according to the physical properties from which
they are derived; for example, in thermal problems, K is sometimes called the
conductivity matrix and F is referred to simply as the source term.

3.4 Finite element idealization

As in Chapter 2, two-dimensional problems will be considered for illustrative
purposes; extensions of the method to three dimensions are, in principle, straight-
forward.

Consider the field problem

(3.2) Lu = f in D

with

(3.3) Bu = g on C.

L and B are differential operators. The finite element method seeks an approx-
imation, ũ(x, y), to the exact solution, u(x, y), in a piecewise manner, the
approximation being sought in each of a total of E elements. Thus, in the general
element [e], an approximation ũe(x, y) is sought in such a manner that outside [e],

(3.4) ũe(x, y) = 0, e = 1, . . . , E.

For example, in Fig. 3.4, ũe(xA, yA) is in general non-zero, but ũe(xB , yB) = 0.
Using eqn (3.4), it follows that the approximate solution may be written as

(3.5) ũ(x, y) =
∑

e

ũe(x, y),

*(xA, yA)

*(xB, yB)

[e]

B

A

Fig. 3.4 A general element [e] containing a point A (xA, yA). The point B (xB , yB) is
not in [e].
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where the summation is taken over all the elements. The reason for writing the
approximate solution in this way is not immediately apparent, but it makes
setting up the overall system of equations a little easier to understand.

The first decision to be made is to choose a suitable subdivision of the region
into finite elements which sufficiently approximates the boundary geometry. This
is very much a matter of choice for the user. More will be said about this when we
deal with individual elements in Sections 3.7 and 3.8 and with the isoparametric
concept in Chapter 4. It also affects the accuracy of the solution, and this will
be discussed in Chapter 6.

Once the discretization has been decided on, the next choice is that of the
representation of the element approximation, ũe(x, y), in terms of the weighted
residual parameters. The most common form of approximation in each element is
polynomial approximation. This is probably due to the fact that polynomials are
relatively easily manipulated, both algebraically and computationally. Polyno-
mials are also attractive from the point of view of the Weierstrass approximation
theorem (Wade 1995), which states that any continuous function may be approx-
imated arbitrarily closely by a suitable polynomial. The choice of polynomial is
a matter for the user, but some guidelines are useful.

1. The number of terms in the polynomial must be equal to the total number
of degrees of freedom associated with the element, otherwise the polynomial
many not be unique. Thus, for a triangular element with three nodes, one
degree of freedom at each node, a three-term polynomial is used, giving

ũe(x, y) = c0 + c1x + c2y = [1 x y][c0 c1 c2]T .

For an element with four nodes and two degrees of freedom at each node, an
eight-term polynomial is used, giving

ũe(x, y) = c0 + c1x + c2y + c3x
2 + c4xy + c5y

2 + c6x
2y + c7xy2

= [1 x y x2 xy y2 x2y xy2][c0, . . . , c7]T .

The coefficients ci are called generalized coordinates and in each case the
approximation is of the form

(3.6) ũe(x, y) = Pe(x, y)Δe,

where Pe(x, y) is a row vector of linearly independent functions and Δe is a
column vector of constants.

2. There should be no preference for either the x or the y direction. This is
often referred to by saying that the approximation must have geometrical
invariance.
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3. There are two other requirements, which will be dealt with in Chapter 7. The
structural description of these requirements is that the element must be able
to exactly reproduce rigid-body motions and constant-strain deformations.
Mathematically, these requirements say that to ensure convergence of the
method the unknown must be continuous and must be allowed to assume
any arbitrary linear form.

Although it is not easy to give definite rules which are applicable in all cases,
it is in general better not to retain high-order terms at the expense of lower ones.
For this reason, complete polynomials are often favoured. Complete polynomials
are those in which all possible terms up to any given degree are present. The
necessary terms for all possible polynomials up to a complete quintic are shown
in Table 3.1.

Thus a complete linear polynomial is of the form

c0 + c1x + c2y

and requires an element with three degrees of freedom to uniquely define c0, c1, c2.
A complete cubic polynomial is of the form

c0 + c1x + c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + c7x

2y + c8xy2 + c9y
3,

and this requires an element with ten degrees of freedom to uniquely define
c0, . . . , c9.

Although the form given by eqn (3.6) is of the type used in the pure weighted
residual approach of Chapter 2, it is in fact better to use the nodal degrees of
freedom as parameters rather than the generalized coordinates. Suppose element
[e] has p nodes with one degree of freedom at each node; see Fig. 3.5. Using
eqn (3.6), the approximation in element [e] is given by

ũe(x, y) = Pe(x, y)Δe.

Table 3.1 Complete polynomials up to order 5

1
x y

x2 xy y2

x2 x2y xy2 y3

x4 x3y x2y2 xy3 y4

x5 x4y x3y2 x2y3 xy4 y5
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U2
Ui

U1

Up

p

i
2

1

Fig. 3.5 Element [e] with p nodes; Ui is the nodal variable associated with node i.

Therefore

Ui = ũe(xi, yi)

=
[
1 xi yi x2

i xiyi y2
i · · · ] [c0 . . . cp]T , i = 1, . . . , p.

Thus the element vector Ue = [U1 . . . Up]
T may be written in the form

(3.7) Ue = CΔe,

where

C =

⎡
⎢⎢⎢⎢⎢⎣

1 x1 y1 x2
1 · · ·

1 x2 y2 x2
2 · · ·

...
...

...
...

1 xp yp x2
p · · ·

⎤
⎥⎥⎥⎥⎥⎦ .

Then

(3.8) Δe = C−1Ue.

Thus, for this element, eqn (3.6) yields

ũe(x, y) = PeC−1Ue,

i.e.

(3.9) ũe(x, y) = NeUe,

where Ne = PeC−1 is called the shape function matrix for element [e]. It relates
the unknown function ũe(x, y) to the nodal variables given by Ue. Outside
element [e], Ne ≡ 0, so that eqn (3.4) is satisfied. There is a serious drawback to
this approach, however, in that the matrix C has to be inverted, which may be
computationally costly. Also, the matrix itself is often ill-conditioned and indeed
may even be singular; see Exercise 3.1.
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It is better to obtain eqn (3.9) directly by interpolation throughout the
element. This is done by choosing a suitable set of interpolation polynomials
Ne

i (x, y), with the property that if (xj , yj) are the coordinates of node j, then

(3.10) Ne
i (xj , yj) = δij , i, j = 1, . . . , p.

The shape function matrix is then given by

(3.11) Ne(x, y) =
[
Ne

1 (x, y) Ne
2 (x, y) · · · Ne

p (x, y)
]
.

The shape functions must be such that conditions 1, 2 and 3 are satisfied.
Condition 3 leads to relationships between Ne

i and Ne
j ; see Exercise 3.2.

It is often helpful in setting up the shape functions, as well as in the following
analysis, to use a set of local coordinates, say (ξ, η), for each element rather
than the global coordinates (x, y). This will be illustrated in the examples in
Sections 3.5–3.8. Indeed, when we deal with isoparametric elements in Chapter
4, this procedure is essential.

At this stage, the discretization and the manner of element approximation
have been decided. The next step in the procedure is to use the Galerkin method
to set up the linear equations for the nodal variables Ui, i = 1, . . . , n, and perhaps
the derivatives (∂u/∂x)i, (∂u/∂y)i, etc. This particular step involves two distinct
sets of operations; setting up the equation for the individual elements, followed
by the assembly of the overall system of equations. It is best demonstrated by
way of examples, and these will be illustrated in the following sections.

The solution of the linear equations yields the overall vector of unknowns

U = [U1 U2 . . . Un]T

as the approximate solution of eqn (3.1) at the nodal points. The approximate
solution at non-nodal points is given by interpolation in each element as

ũ(x, y) =
∑

e

ũe(x, y) =
∑

e

Ne(x, y)Ue.

Finally, once the nodal values have been obtained, there may be field variables
to detemine; for example, if u(x, y) is the velocity potential for a fluid flow, then
the velocity vector at any point (x, y) is given by

q(x, y) = −gradu.

In particular, in element [e],

qe =
[−∂/∂x

−∂/∂y

]
ũe

=
[−∂Ne/∂x

−∂Ne/∂y

]
Ue,
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i.e.

(3.12) qe(x, y) = SeUe,

where

(3.13) Se = [−∂Ne/∂x − ∂Ne/∂y]T

is the element stress matrix.
For problems involving material anisotropy described by a tensor κ, it may

be shown (see Exercise 3.8) that

(3.14) Se = κ [−∂Ne/∂x − ∂Ne/∂y]T .

So far, we have dealt with the approximation expressed by eqn (3.5) in an
element-by-element manner, since the approach is to develop the region as a set
of elements. It is, however, more helpful to consider the approximation (3.5) in
a node-by-node manner. The shape functions Ne

i (x, y) have the property that
Ne

i (x, y) = 0 if i ∈ [e], so that we can define a nodal function wi(x, y) which is
local to node i, given by

(3.15) wi(x, y) =
∑
[e]�j

Ne
j (x, y).

So, instead of using an element-by-element approximation as in eqn (3.5), we use
a node-by-node approximation

(3.16) ũ(x, y) =
n∑

j=1

wj(x, y)Uj ,

where n is the number of nodes in the finite element approximation. The set
of nodal functions is thus a linearly independent set of basis functions for the
approximation.

3.5 Illustrative problem involving one independent variable

The reason for the success of the finite element method is that it may be applied
to problems of great complexity. However, to use such problems for illustrative
purposes tends to obscure the underlying ideas. In this section, a simple problem
involving an ordinary differential equation is solved. This is not to suggest that
the finite element method is the best method for solving such problems; in fact,
there are other numerical methods available which are superior. However, this
particular problem involves only a small amount of algebra and the ‘mechanics’
of the method come through very well.
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U1 U2 U3

x = 0

x

x = 1

2 31

x = –12[1] [2]

Fig. 3.6 Finite element idealization for the two-point boundary-value problem (3.17),
showing the elements 1 and 2 and the global node numbering 1, 2, 3.

Example 3.1 Consider the two-point boundary-value problem

(3.17)
−u′′ = 2, 0 < x < 1,

u(0) = u′(1) = 0.

Consider a two-element discretization of [0, 1] with three nodes, as shown in Fig.
3.6, and suppose that there is one degree of freedom at each node.

In each element there are just two nodal variables, and hence the interpola-
tion polynomials for each element must be linear. Consider an element [e] with
midpoint xm and length h, suppose that the nodes associated with element [e]
have local labels A, B, and that ξ is a local coordinate as shown in Fig. 3.7 and
given by

(3.18) ξ =
2
h

(x − xm).

The shape function matrix is

Ne(ξ) = [Ne
A(ξ) Ne

B(ξ)] ,

where

Ne
A(−1) = Ne

B(1) = 1

and

Ne
A(1) = Ne

B(−1) = 0;

see Fig. 3.8.

uA

xm

h

h
ξ = -

ξ = 1ξ = –1

uB

2

A B

(x ¾ xm)

Fig. 3.7 Element [e], showing the local node labels A,B and the local coordinate ξ.
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ξ

Ne
B (ξ)Ne

A (ξ)

1

1

-1

Fig. 3.8 Linear shape functions Ne
A(ξ) and Ne

B(ξ).

The shape functions are easily recognized as the Lagrange interpolation
polynomials

(3.19) Ne
A(ξ) = 1

2 (1 − ξ), Ne
B(ξ) = 1

2 (1 + ξ).

Since the interpolation is linear, this is often called a linear element. Then, in
element [e],

(3.20) Ue = NeUe

with

(3.21) Ue = [UA UB ]T .

Therefore the overall finite element approximation as given by eqn (3.5) is

(3.22) ũ =
2∑

e=1

ũe.

In this case we have an essential Dirichlet condition at node 1 and a natural
Neumann condition at node 3. Consequently, we must take U1 = u(0) and we
have just two unknown nodal variables, U2 and U3.

The corresponding nodal functions are

w1(x) = N1
A(x), w2(x) = N1

B(x) + N2
A(x), w3(x) = N2

B(x),

where the global coordinate x is related to the local coordinate ξ by eqn (3.18),
and

(3.23) ũ(x) = w1(x)U1 + w2(x)U2 + w3(x)U3.

The Galerkin formulation is obtained by using a weighted residual approach,
taking the basis functions w2 and w3 as the weighting functions; we need only
those two functions associated with the unknowns U2 and U3:
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∫ 1

0

(−ũ′′ − 2)wi dx = 0, i = 2, 3.

We integrate by parts, to reduce the order of derivative required:

[−ũ′wi]
1
0 +

∫ 1

0

ũ′w′
i dx −

∫ 1

0

2wi dx = 0, i = 2, 3.

We now write down the two equations as follows:

i = 2 :
[
−dũ

dx
w2

]1

0

+
∫ 1

0

dũ

dx

dw2

dx
dx −

∫ 1

0

2w2 dx = 0.

Now, w2(0) = 0 since N1
B(0) = 0 and N2

A(x) ≡ 0 in element [1], and w2(1) = 0
since N1

B(x) ≡ 0 in element [2] and N2
A(1) = 0. Hence the first term is zero and

we have ∫ 1/2

0

dũ

dx

dw2

dx
dx +

∫ 1

1/2

dũ

dx

dw2

dx
dx −

∫ 1

0

2w2 dx = 0,

i.e. ∫ 1/2

0

(
dw1

dx
U1 +

dw2

dx
U2

)
dw2

dx
dx −

∫ 1/2

0

2w2 dx

+
∫ 1

1/2

(
dw2

dx
U2 +

dw3

dx
U3

)
dw2

dx
−

∫ 1

1
2

2w2 dx = 0;

i = 3 :
[
−dũ

dx
w3

]1

0

+
∫ 1

0

dũ

dx

dw3

dx
dx −

∫ 1

0

2w3 dx = 0.

Now, w3(x) ≡ 0 in element [1] and the Neumann condition u′(0) = 0 is a natural
condition. Hence the first term is zero and we have∫ 1

1/2

(
dw2

dx
U2 +

dw3

dx
U3

)
dw3

dx
dx −

∫ 1

1/2

2w3 dx = 0.

It follows then that our two equations are of the form

(3.24)
k1
21U1+ (k1

22+ k2
11)U2+ k2

12U3 = f1
2 + f2

1 ,

k2
21U2+ k2

22U3 = f2
2 ,

where the element stiffness matrices and force vectors are given respectively by

(3.25)
ke

ij =
∫

[e]

dNe
i

dx

dNe
j

dx
dx

and fe
i =

∫
[e]

2Ni dx.
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Now, U1 = u(0), a known value, so it follows that eqns (3.24) are sufficent to find
U2 and U3, and our problem is solved. However, since the idea will be helpful in
a more general setting, we develop the equation associated with the weighting
function w1(x). This equation has the form

(3.26) k1
11U1 + k1

12U2 = f1
1 ,

using the notation of eqn (3.25).
Consequently, the overall system of equations may be written as

(3.27) KU = F,

where

K =

⎡
⎢⎣

k1
11 k1

12 0

k1
21 k1

22 + k2
11 k2

12

0 k2
21 k2

22

⎤
⎥⎦ and F =

⎡
⎢⎣

f1
1

f1
2 + f2

1

f2
2

⎤
⎥⎦ .

Before proceeding further, some remarks regarding the overall stiffness
matrix may be made here, since they are generally applicable.

1. It is clearly symmetric, as indeed are the element stiffness matrices.

2. K13 = K31 = 0, showing that there is no coupling between nodes 1 and 3, i.e.
the only coupling occurs between nodes associated with the same element. It
is not difficult to see, then, that for a large number of elements K becomes
sparse and banded.

3. K is singular. This, perhaps, is not so obvious. In structural terms, this simply
says that K allows rigid-body motions, i.e. the structure is not fixed. This
then suggests how the ‘singularity’ in K may be interpreted from the point of
view of the solution of the boundary-value problem (3.17). Fixing a structure
requires prescribing certain displacements, usually equal to zero, and this is
equivalent to enforcing a Dirichlet boundary condition. By adding eqn (3.26)
to the set of equations (3.24) we are, in essence, not enforcing the essential
boundary condition. Before we see how to remove the singularity in K, the
element stiffness and forces will be evaluated.

Using the local coordinate ξ in the integrations in eqn (3.25) yields

kij =
∫ 1

−1

2
h

dNi

dξ

2
h

dNj

dξ

h

2
dξ, i, j = 1, 2.

Whence, using eqn (3.19),

k11 = k22 =
1
h

, k12 = k21 = − 1
h

.
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Also,

fi =
∫ 1

−1

2Ni
h

2
dξ, i = 1, 2,

whence

f1 = f2 = h.

A convenient way to write the element matrices is to label the rows and
columns according to the nodal variable with which they are associated, as shown
below:

k1 =
1
h

1 2[
1 −1

−1 1

]
1

2
, k2 =

1
h

2 3[
1 −1

−1 1

]
2

3
,

f1 = h

1 2[
1 1

]T
, f2 = h

2 3[
1 1

]T
.

The overall stiffness and force matrices are thus

K =
1
h

1 2 3⎡
⎣ 1 −1 0

−1 1 + 1 −1
0 −1 1

⎤
⎦ 1

2

3

and

F = h

1 2 3[
1 1 + 1 1

]T
.

Notice that in K the contribution to the 2,2 position, and in F the contri-
bution to the 2,1 position, is made up from two terms, one from each element.
This is typical of the way that the overall matrices are assembled in general.
If a node is associated with more than one element, then the contribution to
the relevant parts of the overall matrix is merely a matter of addition of the
corresponding terms. This will be discussed in Section 3.6. Notice also in this case
that the element matrices have been defined in terms of h, the element length.
Consequently, it is possible to solve this problem using elements of different
lengths without the necessity of altering the analysis; see Exercise 3.3.

The equations (3.27) now become, with h = 1
2 ,

(3.28)
1
12

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 1

⎤
⎦

⎡
⎣ U1

U2

U3

⎤
⎦ =

1
2

⎡
⎣ 1

2
1

⎤
⎦.
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The next step in the procedure is to solve eqn (3.28) for the unknown nodal
variables. As was seen earlier, the overall stiffness matrix is singular, so that a
solution of the equations is not possible as they stand. However, the boundary
conditions have still to be imposed, and we return to the original set of equa-
tions (3.24), which we obtain by removing row 1 from K and setting U1 = u(0)
where appropriate to obtain

(3.29)
4U2 − 2U3 = 1,

−2U2 + 2U3 = 1
2 ,

which gives U2 = 3
4 , U3 = 1.

To express the solution ũ(x), it is usually more convenient to return to the
element-by-element form, eqns (3.5) and (3.20):

ũ1(x) = 1
2 [1 − ξ 1 + ξ]

[
0 3

4

]T

=
3x

2
, since ξ =

2
1
2

(
x − 1

4

)
in element 1,

and

ũ2(x) = 1
2 [1 − ξ 1 + ξ]

[
3
4 1

]T

=
x + 1

2
, since ξ =

2
1
2

(
x − 3

4

)
in element 2.

Then eqn (3.22) yields the finite element solution as

ũ(x) =

{
3x/2, 0 ≤ x ≤ 1

2 ,

(x + 1)/2, 1
2 ≤ x ≤ 1.

This is compared with a four-element solution and the exact solution in Fig. 3.9.
Now consider a four-element solution of eqn (3.17), with the discretization

as shown in Fig. 3.10. In this case, with all elements of length 1
4 , the element

stiffness matrices are

k1 = 4

1 2[
1 −1

−1 1

]
1

2
, k2 = 4

2 3[
1 −1

−1 1

]
2

3
,

k3 = 4

3 4[
1 −1

−1 1

]
3

4
, k4 = 4

4 5[
1 −1

−1 1

]
4

4
,

and the element force vectors are

f1 = 1
4

[
1
1

]
1

2
, f2 = 1

4

[
1
1

]
2

3
, f3 = 1

4

[
1
1

]
3

4
, f4 = 1

4

[
1
1

]
4

5
,
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Fig. 3.9 Comparison of the two- and four-element solutions of eqn (3.17) with the exact
solution u0(x) = 2x − x2.

U1 U4 U5U2 U3

x = 0

x

x = 1

2 3 4 51

x = –12 x = –34x = –14

[1] [2] [3] [4]

Fig. 3.10 Four-element idealization for the two-point boundary-value problem (3.17).

whence the overall system is

4

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
2 −1 0 0

2 −1 0
2 −1

symmetric 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

⎤
⎥⎥⎥⎥⎦ =

1
4

⎡
⎢⎢⎢⎢⎣

1
2
2
2
1

⎤
⎥⎥⎥⎥⎦ .

Enforcing the homogeneous Dirichlet boundary condition U1 = 0 then yields
the set of equations

8U2 −4U3 = 1
2 ,

−4U2 +8U3 −4U4 = 1
2 ,

−4U3 +8U4 −4U5 = 1
2 ,

−4U4 +4U5 = 1
4 .
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The solution is

U2 = 7
16 , U3 = 3

4 , U4 = 15
16 , U5 = 1.

Then, as in the two-element case, the approximate solution throughout the
interval [0, 1] is found from eqns (3.20) and (3.22). It is easily seen to be given by

U(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

7
4x, 0 ≤ x ≤ 1

4 ,

1
8 (10x + 1), 1

4 ≤ x ≤ 1
2 ,

1
8 (6x + 3), 1

2 ≤ x ≤ 3
4 ,

1
4 (x + 3), 3

4 ≤ x ≤ 1.

This solution is compared with the two-element solution and the exact solution
in Fig. 3.9. There is also a comparison with three other finite element solutions
in Table 3.2.

It should be noted here that the right-hand side in eqn (3.17) is a constant,
so that the element force vector need only be found for element [e]. In general,
it would be necessary to obtain the element force vectors separately for each
element.

The exact solution of eqn (3.17) is

u0(x) = 2x − x2.

From Fig. 3.9 it is easy to see that the refined mesh, with four elements, gives
a better approximation than does the original coarse two-element mesh. Indeed,
this is the basis of the method; the more elements, the better the solution. In
practice, a suitable number of elements is chosen to give satisfactory accuracy.
Notice in this case that the convergence to the exact solution is monotonic; this
is due to the fact that the refined mesh contains the original mesh as a subset.
This is discussed in Chapter 7. Notice also that the mesh with graded elements

Table 3.2 A comparison of the four finite element solutions to the problem in
Example 3.1 and Exercise 3.3

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2 elements 0.15 0.3 0.45 0.6 0.75 0.8 0.85 0.9 0.95 1
4 elements 0.175 0.35 0.5 0.625 0.75 0.825 0.9 0.95 0.975 1
5 elements 0.18 0.36 0.5 0.64 0.74 0.84 0.91 0.96 0.99 1
10 elements 0.19 0.36 0.51 0.64 0.75 0.84 0.91 0.96 0.99 1
4 graded
elements 0.188 0.356 0.5 0.625 0.75 0.8 0.85 0.9 0.95 1
Exact solution 0.19 0.36 0.51 0.64 0.75 0.84 0.91 0.96 0.99 1
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gives better results than the equivalent ungraded mesh in the region in which u0

is changing most rapidly.
There is one other point that may be made by reference to this example,

which relates to the case of a non-homogeneous boundary condition. For a non-
homogeneous Dirichlet condition, for example

u(0) = 1,

the overall set of equations is treated slightly differently. Consider the two-
element approximation equations (3.28) as set up earlier. For the homogeneous
Dirichlet condition U1 = 0, the row and column corresponding to U1 in the
stiffness matrix were deleted, leaving eqn (3.29); in the non-homogeneous case
this is not done. The first equation in eqn (3.28) is replaced by U1 = 1, leaving
a reduced set of two equations.

For a non-homogeneous Neumann boundary condition, for example

u′(1) = 1,

the term [−(dũ/dx)w3]10 is now replaced by −u′(1)w3(1), since the Neumann
condition is a natural boundary condition and w3(x) ≡ 0 in element 1. This
gives rise to a term [0 − 1]T on the left-hand side of the reduced set of equations
as follows:

[
0

−1

]
+ 2

[ −1 2 −1
0 −1 1

]⎡
⎣ 1

U2

U3

⎤
⎦ = 1

2

[
2
1

]
,

which yields [
4 −2

−2 2

] [
U2

U3

]
=

[
1
1
2

]
− 2

[−1
0

]
−

[
0

−1

]
,

whence U2 = 9
4 , U3 = 3; see the similar procedure adopted in the classical

Rayleigh–Ritz method in Section 2.6. The resulting finite element solution is
then

ũ(x) =

{
1 + 5

2x, 0 ≤ x ≤ 1
2 ,

3
2 + 3

2x, 1
2 ≤ x ≤ 1.

We note that ũ′(1) = 3
2 , a relatively poor approximation to u′(1) = 1, but we

have used only two elements.
This simple problem was deliberately chosen and worked through in detail

to illustrate how the method works, step-by-step. Since the procedure for more
general problems is identical with this one, the basic steps will be listed here
and the generalization to problems involving partial differential equations will
be presented in the next section.
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1. Subdivide the region of interest into a finite number of subregions, the finite
elements. In Example 3.1, the elements were simple subintervals of the interval
[0, 1]. In two- and three-dimensional problems, there is a variety of elements
to choose from, for example triangles and rectangles in two dimensions, and
tetrahedra and rectangular bricks in three dimensions.

2. Choose nodal variables and shape functions so that the function behaviour
throughout each element may be obtained. In Example 3.1, the nodal variables
were simply the function values Ui, and the shape functions were chosen to
give a linear variation for ũe. It is not necessary that only function values be
determined at the nodes; derivatives may also be taken as nodal variables and
suitable shape functions chosen; see Section 4.4.

3. Obtain the element stiffness and force matrices, and the stress matrices if field
variables are required. In Chapter 5 we shall show how variational methods
may be used as an alternative to the Galerkin method in certain cases.

4. Assemble the overall system of equations from the individual element matrices.

5. Enforce the essential boundary conditions. In Example 3.1, there were two
boundary conditions: an essential homogeneous Dirichlet condition, which was
enforced at this stage, and a natural homogeneous Neumann condition, which
was handled automatically.

6. Solve the overall system of equations. In Example 3.1, four elements only were
used and the resulting system of equations was easily solved by hand; for more
equations, efficient computational methods must be used.

7. Compute further results. In many practical examples, field variables must be
found from the function ũe. These are obtained using the overall stress matrix.

Example 3.2

−u′′ = ex,

u(0) = 1, u′(1) = 2.

We illustrate the use of a spreadsheet to solve this problem with five equal
elements. Firstly, with the usual notation, we have element stiffness matrices

ke =
1
h

[
1 −1

−1 1

]
.

The element force vectors are given by (see Exercise 3.5)

exm

[
(1 + 2/h) sinh(h/2) − cosh(h/2)

(1 − 2/h) sinh(h/2) + cosh(h/2)

]
= exm

[
H1

H2

]
.
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Fig. 3.11 Spreadsheet solution for the problem of Example 3.2.

Table 3.3 Comparison of the finite element solution with the exact solution for the
problem of Example 3.2

x 0.2 0.4 0.6 0.8 1

5 elements 1.7223 2.3955 3.0089 3.5491 4
Exact solution 1.7223 2.3955 3.0089 3.5491 4

By analogy with Example 3.1, the overall system of equations is

⎡
⎢⎢⎢⎢⎣

0
0
0
0

−2

⎤
⎥⎥⎥⎥⎦ +

1
5

⎡
⎢⎢⎢⎢⎣

−1 2 −1 0 0 0
−1 2 −1 0 0

−1 2 −1 0
−1 2 −1

symmetric −1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
U2

U3

U4

U5

U6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

ex1H2 + ex2H1

ex2H2 + ex3H1

ex3H2 + ex4H1

ex4H2 + ex5H1

ex5H2

⎤
⎥⎥⎥⎥⎦ ,

i.e.

KU = F.

The spreadsheet solution is shown in Fig. 3.11, and a comparison of the finite
element solution with the exact solution, u0(x) = 2 + (2 + e)x − ex, is shown in
Table 3.3, where we note that at the nodes the exact solution is recovered; we
also notice this in Table 3.2. This phenomenon, called superconvergence, will be
discussed in Section 7.1.

3.6 Finite element equations for Poisson’s equation

In this section, the ideas outlined in Section 3.4 and illustrated with a simple
problem in Section 3.5 are used to set up the element matrices for the solution
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of Poisson’s equation in a general two-dimensional region D, subject to non-
homogeneous Dirichlet or Robin conditions on the boundary curve C. It will
be assumed that there is only degree of freedom at each node, namely Ui. The
theory follows an identical argument when derivatives are also taken as nodal
variables; the only change in practice is that different shape functions must be
used. This will be discussed in Chapter 4.

Consider the following problem:

(3.30) −div(k grad u) = f(x, y) in D

with the Dirichlet boundary condition

(3.31) u = g(s) on C1

and the Robin boundary condition

(3.32) k(s)
∂u

∂n
+ σ(s)u = h(s) on C2.

A Neumann condition is obtained from the Robin condition as a special case
when σ ≡ 0. In this case k(x, y) is a scalar function of position, so that the
problem is isotropic. In principle, it is not difficult to take anisotropy into
account, in which case the material properties are defined by a tensor represented
by κ (see eqn (2.5) and Exercise 3.7). The two-dimensional nature of the problem
means that the finite element process is a little more complicated than that
for one-dimensional problems. We shall illustrate the process by considering
triangular elements with three nodes. It is very easy to generate elements of
any shape with any number of nodes. A typical region is shown in Fig. 3.12.

The nodal numbering shown in Fig. 3.12 represents a global numbering
system. It is convenient to set up a local numbering system as we did for the
one-dimensional case in Section 3.5. The local system is shown in Fig. 3.13.

6

2

5

8

4
1

3

7

10

11
14

15
12

16

13

Fig. 3.12 Discretization of the two-dimensional region D using triangular elements.
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B

A

C[e]

Fig. 3.13 Local node numbers A, B, C for the element [e].

The element interpolation is given by

(3.33) ũe = Ne
AUA + Ne

BUB + Ne
CUC ,

where Ne
A, Ne

B and Ne
C are suitable interpolation polynomials, the shape func-

tions.
Just as for one-dimensional elements, the shape functions have the property

Ne
i =

{
0, i /∈ [e],

Ne
i (x, y), i ∈ [e].

The overall approximation in an element-by-element sense is

(3.34)
ũ =

E∑
e=1

ũe

=
E∑

e=1

(Ne
AUA + Ne

BUB + Ne
CUC) ,

where E is the total number of elements.
In order to write our approximation in a node-by-node sense, we proceed

as follows.

Suppose that node j is contained in the elements [p], [q], [r] and [s] as shown
in Fig. 3.14. If we expand the summation on the right-hand side of eqn (3.34)
and concentrate on node j, we have

ũ = . . . + Nq
BUq

B + . . . + Nr
CUr

C + . . . Ns
AUs

A + . . . Np
AUp

A + . . .

= . . . (Nq
B + Nr

C + Ns
A + Np

A) Uj + . . . ,

i.e.

(3.35) ũ =
n∑

j=1

wj(x, y)Uj ,
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[s] [s]

[p]

[p]

[q] [q]

[r]
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A

A

B
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B
C

C

C
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A

Fig. 3.14 Global node j in elements [p], [q], [r] and [s] with local node numbering.

where n is the total number of nodes and

(3.36) wj(x, y) = Nq
B + Nr

C + Ns
A + Np

A =
∑
e�j

Ne
j .

The set {wj(x, y)} is a set of linearly independent nodal functions (cf. eqns (3.15)
and (3.16)).

Suppose that there are N nodes in C2 ∪ D and M nodes on C1 so that
n = N + M , and we choose the global numbering such that j = 1, . . . , N for
the nodes in C2 ∪ D and j = N + 1, . . . , n for nodes on C1. Remember that the
Dirichlet condition (3.31) is an essential condition, so we set Uj = h(sj) for j =
N + 1, . . . , n. Correspondingly, we do not set up the weighted residual equation
associated with wj ; this is equivalent to setting wj = 0 for j = N + 1, . . . , n.

We now use the Galerkin method for eqn (3.30) with the weighting function
given by eqn (3.36):∫∫

D

(− div(k grad ũ) − f) wi(x, y) dx dy = 0, i = 1, 2, . . . , n.

Using the first form of Green’s theorem, this becomes∫∫
D

k grad wi · grad ũ dx dy −
∮

C

k
∂ũ

∂n
wi ds −

∫∫
D

fwi dx dy=0, i=1, 2, . . . , n,

i.e.

(3.37)
∫∫

D

k grad wi · grad ũ dx dy−
∫

C2

k
∂ũ

∂n
wi ds−

∫∫
D

fwi dx dy=0, i=1, 2, . . . , N,

since we have wi = 0 for i = N + 1, . . . , n. Now, on C2, we have the natural
Neumann boundary condition, eqn (3.32), which we approximate by

k
∂ũ

∂n
= h − σũ,
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so that eqn (3.37) becomes∫ ∫
D

k grad wi · grad ũ dx dy +
∫

C2

σũwi ds =
∫ ∫

D

fwi dx dy +
∫

C2

gwi ds.

Finally, we use the nodal approximation (3.35) to obtain

∫ ∫
D

k

N+M∑
j=1

grad wi · grad wjUj dx dy +
∫

C2

σ

N+M∑
j=1

wiwjUj ds

=
∫ ∫

D

fwi dx dy +
∫

C2

gwi ds, i = 1, 2, . . . , N,

which we may write

N+M∑
j=1

KijUj = Fi, i = 1, 2, . . . , N,

or, in matrix form,

(3.38) KU = F,

where K is an N × (N + M) matrix, which may be developed from the element
stiffness matrices as follows:

(3.39)
Kij =

∫ ∫
D

k grad wi · grad wj dx dy +
∫

C2

σwiwj ds

=
∑
[e]�j

∫ ∫
[e]

k gradNe
i · grad Ne

j dx dy +
∑

[e]∈C2

∫
Ce

2

σNe
i Ne

j ds,

where Ce
2 is that part of the approximation to C2 which lies in element [e], if

appropriate; see Fig. 3.15.
Hence we may write

Kij =
∑

e

ke
ij +

∑
e∈C2

k̄e
ij ,

[e]

Ce
2

C2

Fig. 3.15 Approximate boundary Ce
2 .
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where

ke
ij =

∫ ∫
[e]

k

(
∂Ne

i

∂x

∂Ne
j

∂x
+

∂Ne
i

∂y

∂Ne
j

∂y

)
dx dy,(3.40)

k̄e
ij =

∫
Ce

2

σNe
i Ne

j ds.(3.41)

Also,

Fi =
∑

e

fe
i +

∑
e∈C2

f̄e
i ,

where

fe
i =

∫ ∫
[e]

fNe
i dx dy,(3.42)

f̄e
i =

∫ ∫
Ce

2

hNe
i ds.(3.43)

We could have proceeded in just the same way as for the one-dimensional
element and included the equations for the weighting function associated with
the Dirichlet boundary condition nodes to obtain an (N + M) × (N + M) square
matrix, KO, which, just as before, would be singular. However, at this stage we
shall not do this; instead, we shall work directly with the non-square matrix K

in eqn (3.38). We shall say more about the matrix KO at the end of this section.
We know that at nodes i = N + 1, . . . , n the values of Ui are prescribed,

hence we can partition eqn (3.38) as follows:

[K1 K2]
[
U1

U2

]
= F,

where U1 is a vector of the known values of u on C, i.e. we may write

K2U2 = F − K1U1.

The N × N matrix K2 is called the reduced overall stiffness matrix, and it
is this with which we shall work.

This overall system of equations we shall write in the form

(3.44) KU = F,

where K is the reduced stiffness matrix, U contains only the unknown nodal
values and F is the modified force vector.

Finally, we need to address the existence or otherwise of solutions to
eqn (3.44).
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Example 3.3 Consider the differential operator given by

Lu = −div(k grad u);

then ∫ ∫
D

uLu dx dy =
∫ ∫

D

grad u · k grad u dx dy −
∮

C

uk
∂u

∂n
ds

=
∫ ∫

D

k | grad u |2 dx dy −
∮

C

uk
∂u

∂n
ds.

For a homogeneous Dirichlet boundary condition, the boundary integral vanishes
and hence L is positive definite provided that k > 0. For a homogeneous Robin
boundary condition,

k
∂u

∂n
+ σu = 0.

It is also necessary that σ > 0 in order that L is positive definite (cf.
Example 2.2).

Suppose that v =
∑N

j=1 wjvj , where vj is arbitrary and wj is the nodal
function associated with node j; then∫ ∫

D

vLv dx dy =
∫ ∫

D

k grad v · grad v dx dy −
∫

C1

vk
∂v

∂n
ds +

∫
C2

vσv ds

=
∫ ∫

D

k
∑

grad wivi.
∑

grad wjvj dx dy +
∫

C2

σ
∑

wivi

∑
wjvj ds

= vT

⎛
⎜⎝∫ ∫

D

⎡
⎢⎣

∂w1/∂x ∂w1/∂y

∂w2/∂x ∂w2/∂y
...

...

⎤
⎥⎦[

∂w1/∂x ∂w2/∂x . . .

∂w1/∂y ∂w2/∂y . . .

]
dx dy

⎞
⎟⎠v

+vT

⎛
⎜⎝∫

C2

σ

⎡
⎢⎣

w1

w2

...

⎤
⎥⎦ [

w1 w2 . . .
]
ds

⎞
⎟⎠v,

i.e. ∫ ∫
D

vLv dx dy = vT Kv,

where K is the reduced overall stiffness matrix.
Now we know that, provided k > 0 and σ > 0, L is positive definite. It follows

then that, since v is arbitrary, under these conditions K is positive definite. Hence
eqn (3.44) has a unique solution.

From a computational point of view, the explicit construction of the overall
stiffness matrix from the element matrices is not immediately clear. This can be



98 The Finite Element Method

seen from eqn (3.36), in which the nodal functions wj are developed in terms of
the element shape functions. The shape functions are numbered locally, whereas
the nodal functions are numbered globally. We shall now consider how these
systems are related.

Suppose that Ne is the matrix of element shape functions so that

ũe =
[
Ne

A Ne
B Ne

C

] ⎡⎣UA

UB

UC

⎤
⎦

= NeUe.

We shall write

αe =
[

∂/∂x

∂/∂y

]
Ne.

The element matrices given by eqns (3.40)–(3.43) may be written in matrix form
as

ke =
∫ ∫

[e]

kαeT

αe dx dy,(3.45)

k̄e =
∫

Ce
2

σNeT

Ne ds,(3.46)

fe =
∫ ∫

[e]

fNeT

dx dy,(3.47)

f̄e =
∫

Ce
2

hNeT

ds.(3.48)

Consider the element [e] with m nodes p, q, . . . , i, . . . , s as shown in Fig. 3.16.
Let us consider the setting up of the N × N matrix KO, which is obtained

by using all n weighting functions, in which we take all wj (j = 1, . . . , n) to be
non-zero and given by eqn (3.36). We consider the contribution to ke from the
terms in eqn (3.39) and we include boundary contributions where appropriate;

p

q

s

i
[e]

Fig. 3.16 Element [e] with m nodes p, q, . . . , i, . . . , s.
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∑
[e]�j

∫ ∫
[e]

k grad Ne
i · grad Ne

j dx dy +
∑

[e]∈C2

∫
C2

σNe
i Ne

j ds.

The only non-zero terms are those associated with nodes p, q, . . . , i, . . . , s,
so the contribution to row i of KO is

1 2 p q i s n

[0 0 . . . 0 ke
ip 0 . . . 0 ke

iq 0 . . . 0 ke
ii 0 . . . 0 ke

is 0 . . . 0]
,

and we have the contribution to all rows of KO as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

ke
pp+ . . . +ke

ps
...

ke
qp+ . . . +ke

qs
...

ke
sp+ . . . ke

ss
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

...
p

...
q

...
s

...
n

.

Now the element vector of nodal values

Ue = [Up Uq . . . Ui . . . Us]
T

is related to the global vector U = [U1 U2 . . . Un]T by

(3.49) Ue = aeU,

where a is an n × n Boolean matrix given by

ae =

1⎡
⎢⎢⎢⎣

0
0
...
0

2

0
0
...
0

. . .

. . .

. . .

p

1
0
...
0

. . .

. . .

. . .

q

0
1
...
0

. . .

. . .

. . .

s

0
0
...
1

. . .

. . .

. . .

n

0
0
...
0

⎤
⎥⎥⎥⎦

p

q

...
s

,

i.e., in Fig. 3.17,

U = [U1 . . . U7]
T

,

U3 = [U3 U5 U6 U7]
T

= a3U,



100 The Finite Element Method

[1]

[2]
[3]

[4]

1

2

4

5

3

6

7

Fig. 3.17 A system of four elements and seven nodes.

where

a3 =

1⎡
⎢⎢⎣

2 3

1
4 5

1

6

1

7

1

⎤
⎥⎥⎦

3

5

6

7

.

Consequently, we have the following structure for KO:

1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

...

p

...

ke
pp

ke
qp

ke
sp

...

q

...

ke
pq

ke
qq

ke
sq

...

s

...

ke
ps

ke
qs

ke
ss

...

n

...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

...

p

q

s

n

,

which may be written

aeT

keae.

Pre-multiplication by aeT

affects only the rows of ke, and post-multiplication by
ae affects only the columns of ke. The net effect is to expand ke from an m × m

matrix to an n × n matrix.
Finally, then, we can write

(3.50) KO =
∑

e

aeT

keae.

Similarly, we may obtain

(3.51) F =
∑

e

aeT

fe.
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Equations (3.50) and (3.51) are convenient expressions for the computational
development of KO and F. From a practical point of view, the system of
equations is always produced in terms of the reduced stiffness matrix K (see
eqn (3.44)).

The solution of eqn (3.44) then yields the unknown nodal values. It is not
the intention in this text to discuss the methods of solution of the resulting alge-
braic equations, since this is adequately covered elsewhere (see e.g. Zienkiewicz
and Taylor (2000a,b) and Smith and Griffiths (2004) and the references given
therein), although we shall make some comments in Chapter 8. It is, however,
interesting to note the structure of the equations, since their special form means
that particular computational procedures may be used.

1. K is symmetric.

2. K is also sparse, since the i, j location contains a non-zero element only when
nodes i and j are in the same element. Thus, for a system with a large number
of elements, most of the Kij will be zero.

3. K is positive definite.

4. Finally, suppose that overall the elements, the largest difference in node
numbers in any element is d − 1; then K will have a semi-bandwidth d, and for
even moderately sized problems the stiffness matrix will have all its non-zero
elements banded around the leading diagonal; see Fig. 3.18. The bandwidth
depends very much on the numbering system employed for the nodes and may
be minimized by a careful choice of node numbering (see Exercise 3.12).

These four properties allow very large systems to be handled for any
given amount of computer storage. They are also influential in the reduction
of computation time, see Chapter 9.

* *
**
* *

*
*
*
* *

*

* *
*

*

* *

*
*
* *

* *
*

**
*
*

m
d

n

Fig. 3.18 Banded structure of a typical stiffness matrix. If nodes m and n are in the
same element and max | n − m | +1 = d, then the semi-bandwidth is d. Only the upper
triangle is shown, since the matrix is symmetric.
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3.7 A rectangular element for Poisson’s equation

The simplest rectangular element is one with just four nodes, one at each corner.
Choose local coordinates (ξ, η) as shown in Fig. 3.19. The element superscript
e will be dropped in this section. Since there are four nodes with one degree of
freedom at each node, the function variation throughout the element is of the
following bilinear form:

(3.52) u(x, y) = c0 + c1x + c2y + c3xy.

Writing this in terms of interpolation polynomials instead of generalized
coordinates yields

u(x, y) = NU(3.53)

= 1
4 [(1 − ξ)(1 − η) (1 + ξ)(1 − η) (1 + ξ)(1 + η) (1 − ξ)(1 + η)]

⎡
⎢⎢⎣

U1

U2

U3

U4

⎤
⎥⎥⎦ .

Now,

∂

∂x
≡ 2

a

∂

∂ξ
and

∂

∂y
≡ 2

b

∂

∂η
.

Thus

α =
1
2

[
− 1

a (1 − η) 1
a (1 − η) 1

a (1 + η) − 1
a (1 + η)

− 1
b (1 − ξ) − 1

b (1 + ξ) 1
b (1 + ξ) 1

b (1 − ξ)

]
.

Now,

k =
∫ ∫

[e]

kαT α dx dy, using eqn (3.45).

4

1 2

3

y

a

bξ

η

x

(xm , ym)

Fig. 3.19 The four-node rectangle. (xm, ym) are the coordinates of the centroid of the
rectangle, ξ = (2/a)(x − xm) and η = (2/b)(y − ym).
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For the special case k = constant,

k = k

∫ 1

−1

∫ 1

−1

αT α
a

2
dξ

b

2
dη

=
k

6

1⎡
⎢⎢⎣

2(r + 1/r)

symmetric

2

r − 2/r

2(r + 1/r)

3

−r − 1/r

1/r − 2r

2(r + 1/r)

4

1/r − 2r

−r − 1/r

r − 2/r

2(r + 1/r)

⎤
⎥⎥⎦

1

2

3

4

,(3.54)

where r = a/b is the aspect ratio of the element. In performing the integrations
above, the algebra is simplified by noticing that

∫ 1

−1

ξ2n+1dξ = 0 and
∫ 1

−1

ξ2ndξ =
2

2n + 1
.

To evaluate the element force vector, consider the special case f = constant.
Using eqn (3.47),

(3.55) f = f

∫ 1

−1

∫ 1

−1

fNT a

2
dξ

b

2
dη =

ab

2
f

1[
1

2

1
3

1
4

1 ]T .

In this case f(x, y) is a constant, so that the element force vector is the same for
all elements. In general, this will not be the case, since f(x, y) will be different
in each element and so will yield a different force vector.

If the element is a boundary element and a non-homogeneous Robin bound-
ary condition holds there, then additions are needed to the stiffness and force
matrices as given by eqns (3.46) and (3.48). Suppose for example that nodes 3
and 4 are situated on a boundary along which

∂u/∂n + σu = h,

with σ and h constants. On side 3,4, the arc length s is such that

ds = −dx = −1
2
dξ,

since the boundary integrals are traversed in a counterclockwise direction. Thus

k̄ =
∫ 1

−1

σ
1
16

⎡
⎢⎢⎣

0
0

2(1 + ξ)
2(1 − ξ)

⎤
⎥⎥⎦ [0 0 2(1 + ξ) 2(1 − ξ)]

(
−a

2

)
dξ,
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using eqn (3.46) and remembering that on side 3,4 η = 1 and that ξ = −1 at
node 3 and ξ = 1 at node 4. Therefore

(3.56) k̄ =
a

6
σ

1⎡
⎢⎢⎣

0
0
0
0

2

0
0
0
0

3

0
0
2
1

4

0
0
1
2

⎤
⎥⎥⎦

1

2

3

4

.

Also, using eqn (3.48),

f̄ =
∫ 1

−1

h
1
4

[0 0 2(1 + ξ) 2(1 − ξ)]T
(
−a

2

)
dξ

= ah
1[
0

2

0
3

1
4

1 ]T .(3.57)

Notice that the ‘boundary’ matrices contain non-zero terms only for those nodes
which are themselves boundary nodes. This is, of course, as would be expected.

These results will now be used to obtain a one-element solution of the
following boundary-value problem.

Example 3.4 Suppose that u satisfies Laplace’s equation

∇2u = 0

in a region D which is a square with vertices at (0, 0), (1, 0), (1, 1), (0, 1). Suppose
also that the boundary conditions are

∂u

∂x
= 0 on x = 0 and x = 1,

∂u

∂y
+ u = 2 on y = 1,

u = 1 on y = 0.

We shall consider a one-element solution.
Using eqns (3.54), (3.56), and (3.57), the element matrices are

k =
1
6

1⎡
⎢⎢⎣

4

sym

2

−1
4

3

−2
−1

4

4

−1
−2
−1

4

⎤
⎥⎥⎦

1

2

3

4

,
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k̄ =
1
6

1⎡
⎢⎢⎣

0

sym

2

0
0

3

0
0
2

4

0
0
1
2

⎤
⎥⎥⎦

1

2

3

4

,

f̄ =
1[
0

2

0
3

1
4

1 ]T .

In this case f(x, y) ≡ 0, so that f = 0. Hence

K =
1
6

1⎡
⎢⎢⎣

4

sym

2

−1
4

3

−2
−1

6

4

−1
−2

0
6

⎤
⎥⎥⎦

1

2

3

4

and

F =
1[
0

2

0
3

1
4

1 ]T .

Thus the overall system of equations, after enforcing the non-homogeneous
Dirichlet boundary conditions U1 = U2 = 1, is

1
6

[
6 0
0 6

] [
U3

U4

]
=

[
1
1

]
− 1

6

[ −2 −1
−1 −2

] [
1
1

]
;

the solution then yields

U3 = U4 = 3
2 .

Interpolation through the element gives

ũe(x, y) =
1
4

[(1 − ξ)(1 − η) (1 + ξ)(1 − η) (1 + ξ)(1 + η) (1 − ξ)(1 + η)]

×

⎡
⎢⎢⎢⎣

1
1
3
2

3
2

⎤
⎥⎥⎥⎦

=
5
4

+
η

4
,

i.e. ue(x, y) = 1 + y/2. The exact solution is u(x, y) = 1 + y/2. This has been
recovered by the finite element solution because it is contained among all the
possible forms (3.52).

A disadvantage of this element is that the orientation with respect to
the coordinate axes determines whether the solution is continuous across
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interelement boundaries or not. Consider two adjacent elements whose sides are
not parallel to the coordinate axes; see Fig. 3.20. Along the common side AB,
we have y = mx + c, say, so that the variation of ũe along this side is of the form

ũe = α0 + α1x + α2x
2,

and this must be determined by the nodal values along this side. Now, there
are only two nodes on AB, so that the quadratic variation along this side is not
unique, i.e., in general, ũe is not continuous across AB except, of course, at the
nodes. These elements are said to be non-conforming elements, or incompatible
elements; see Fig. 3.21.

For rectangular elements whose sides are parallel to the coordinate axes, ũe

is continuous across interelement boundaries, and such elements are said to be
conforming elements, or compatible elements. It should be noted here that the
rectangular element of Fig. 3.20 can be a conforming element provided that, in
each element, ũe is expressed in terms of the local coordinates (ξ, η). In this case
η = constant along AB, so that along this line ũe is a linear function of ξ and
thus is uniquely determined by its values at the nodes A and B.

[1]

[2]

x

y

A

B

Fig. 3.20 Two adjacent rectangular elements whose sides are not parallel to the coordi-
nate axes.

[1] [2]

A

B

u2˜u1˜

Fig. 3.21 Non-conformity between ũ1 and ũ2 along the interelement boundary AB for
two rectangular elements whose sides are not parallel to the coordinate axes.
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3.8 A triangular element for Poisson’s equation

The rectangular element developed in Section 3.7 was shown to be a non-
conforming element in certain circumstances, and this is a disadvantage if
interelement continuity is required. A second disadvantage, which is probably
more important, however, is that rectangular elements are applicable only to
problems whose geometry is sufficiently regular; see Fig. 3.22(a). For irregular
boundaries, rectangular elements are not appropriate, since it is difficult to
approximate the boundary geometry with such elements; see Fig. 3.22(b).

A more versatile element, as far as boundary geometry approximation is
concerned, is the triangle, since any curve can be approximated arbitrarily closely
by a polygonal arc and the area enclosed by a polygon can be exactly covered
by triangles; see Fig. 3.23. This, of course, is also true for rectangles but a larger
number will be required to achieve a given accuracy.

It is possible to set up the element matrices using the global coordinates
(x, y); however, the algebra is simplified by using a set of triangular coordinates

(a) (b)

Fig. 3.22 (a) A typical geometry suitable for approximation with rectangular elements.
(b) An irregular geometry, for which rectangles are not suitable by virtue of the very
poor boundary geometry approximation. The region between the exact boundary and the
approximate boundary is the shaded area.

Fig. 3.23 The region of Fig. 3.22(b) approximated with triangular elements using the
same number of nodes, showing the much improved boundary approximation.
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L2 = 0

L1 = 1

L3 = 0

L3 = 1

L1 = 0

L2 = 1

L3

L1

(L1,L2,L3)

L2

A2

PA3

A1

x

(x1 , y1)

(x2 , y2)

(x3 , y3)

y

2

1

3

Fig. 3.24 Area coordinates for a triangular element.

(L1, L2, L3) as shown in Fig. 3.24. These coordinates are often called area
coordinates.

In Fig. 3.24,

(3.58) L1 =
A1

A
, L2 =

A2

A
, L3 =

A3

A
,

where A is the area of the triangle and A1, A2, A3 are the areas shown there.
The position of P may thus be given by the coordinates (L1, L2, L3). It follows
that the three coordinates are not independent, since they satisfy the equation

(3.59) L1 + L2 + L3 = 1.

The relationship between the global coordinates (x, y) and the local triangular
coordinates (L1, L2, L3) is given by

x = L1x1 + L2x2 + L3x3,(3.60)

y = L1y1 + L2y2 + L3y3.(3.61)

Equations (3.60) and (3.61) may be solved to obtain Li in terms of x and y as

(3.62) Li =
(ai + bix + ciy)

2A
,

where the area A is given by

(3.63) A =
1
2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ .
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The constants ai, bi and ci are given in terms of the nodal coordinates by

a1 = x2y3 − x3y2,

b1 = y2 − y3,(3.64)

c1 = x3 − x2,

the others being obtained by cyclic permutation. From eqn (3.62), the following
relationships between derivatives may be obtained:

∂Li

∂x
=

bi

2A
,(3.65)

∂Li

∂y
=

ci

2A
.(3.66)

Finally, a result concerning an integral involving the area coordinates is
required; the proof is given in Appendix C.

(3.67)
∫ ∫

A

Lm
1 Ln

2Lp
3 dx dy =

2Am!n! p!
(m + n + p + 2)!

.

Since the element has three nodes with one degree of freedom at each node, the
function variation throughout the element is linear, i.e. it is of the form

(3.68) ũe(x, y) = a0 + a1x + a2y.

Using nodal values and interpolating through the element in the usual manner
gives

ũe = NeUe

= [L1 L2 L3] [U1 U2 U3]
T

.

The shape functions are easily found, since the value of Li at node j is δij and
each Li varies linearly with x and y through the element.

Using eqn (3.40), the element stiffness matrix is given by

kij =
∫ ∫

A

k

(
∂Li

∂x

∂Lj

∂x
+

∂Li

∂y

∂Lj

∂y

)
dx dy

=
∫ ∫

A

k

(
bibj

4A2
+

cicj

4A2

)
dx dy.

In the special case k = constant,

(3.69) kij =
k

4A
(bibj + cicj).
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The element force vector is given by

(3.70) fi =
∫ ∫

A

Li f(x, y) dx dy.

In the special case f = constant,

(3.71) fi =
fA

3

or, by using eqns (3.60) and (3.61), f(x, y) can be written in terms of L1, L2, L3

and hence fi may be obtained.
Sometimes it is useful to interpolate f(x, y) through the element from its

nodal values; see Exercise 3.11. For example, if f(x, y) = sin(x + y), it is difficult
to evaluate the integrals for fi.

For boundary elements where the Robin boundary condition (3.32) holds,
contributions to the element stiffness and force matrices are required in the
following form (see eqns (3.46) and (3.48)):

k̄ =
∫

Ce
2

σ(s)NeT

Ne ds,

f̄ =
∫

Ce
2

h(s)NeT

ds.

Suppose for example that side 3,1 is a boundary side; see Fig. 3.25. On side
3,1, L2 = 0 and s =

(
b2
2 + c2

2

) 1
2 L1, so that

ds =
(
b2
2 + c2

2

)1/2
dL1.

Then, since L3 = 1 − L1,

(3.72) k̄ =
∫ 1

0

σ

⎡
⎣ L2

1 0 L1 − L2
1

0 0 0
L1 − L2

1 0 (1 − L1)2

⎤
⎦(

b2
2 + c2

2

)1/2
dL1

Ce
2

|c2|

|b2|

1
2

3

Fig. 3.25 Element with side 3,1 approximating the boundary.
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and

(3.73) f̄ =
∫ 1

0

h [L1 0 1 − L1]
T (

b2
2 + c2

2

)1/2
dL1.

Similar results are obtained by cyclic permutation when sides 1,2 and 2,3 are
boundary sides.

These results will now be used to obtain a two-element solution of Exam-
ple 3.4, which was solved using a single rectangular element.

Example 3.5 In this problem, a solution to Laplace’s equation is sought in
the square with vertices at (0, 0), (1, 0), (1, 1), (0, 1), subject to the boundary
conditions

∂u

∂x
= 0 on x = 0 and x = 1,

∂u

∂y
+ σ = 2 on y = 1,

u = 1 on y = 0.

Suppose that element 1 has nodes 1, 2, 4 and element 2 has nodes 4, 2, 3 as
shown in Fig. 3.26. Since f(x, y) = 0,

f1 = f2 ≡ 0.

For element 1,

a1 = 1, a2 = 0, a3 = 0,

b1 = −1, b2 = 1, b3 = 0,

c1 = −1, c2 = 0, c3 = 1,

1

4

2

[2]

[1]

3

x

y

Fig. 3.26 Unit square divided into two triangular elements.
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so that

k1 =
1
2

1⎡
⎣ 2

sym

2

−1
1

4

−1
0
1

⎤
⎦ 1

2

4

.

There is no contribution from boundary terms in element 1, since one bound-
ary has a homogeneous Neumann condition and the other requires a non-
homogeneous Dirichlet condition.

For element 2,

a1 = 1, a2 = 1, a3 = −1,

b1 = −1, b2 = 0, b3 = 1,

c1 = 0, c2 = −1, c3 = 1,

so that

k1 =
1
2

4⎡
⎣ 1

sym

2

0
1

3

−1
−1

2

⎤
⎦ 4

2

3

.

Notice that this result could easily have been obtained directly from k1 by
symmetry considerations.

Element 2 has a boundary side 3,4, along which there is the Robin condition

∂u

∂n
+ u = 2.

Thus there is a contribution to both the stiffness and the force matrices given by

k̄2 =
∫ 1

0

⎡
⎣L2

1 0 L1 − L2
1

0 0
sym (1 − L1)2

⎤
⎦ 1 dL1

=
1
6

4⎡
⎣ 2

sym

2

0
0

3

1
0
2

⎤
⎦ 4

2

3

and

f̄2 =
∫ 1

0

2 [L − 1 0 − L1]
T 1 dL1

=
4[
1

2

0
3

1 ]T .
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Assembling the overall matrices yields

K =
1
6

1⎡
⎢⎢⎣

6

sym

2

−3
6

3

0
−3

8

4

−3
0

−2
8

⎤
⎥⎥⎦

1

2

3

4

and

F =
1[
0

2

0
3

1
4

1 ]T .

Thus the overall system of equations becomes, after enforcing the essential
Dirichlet boundary condition U1 = U2 = 1,

8
6U3 − 2

5U4 = 1 − (− 3
6

)
1,

− 2
6U3 + 8

6U4 = 1 − (− 3
6

)
1,

which yields U3 = U4 = 3
2 , as before.

The solution at non-nodal points is given by

U1(x, y) = [L1 L2 L3]
[
1 1 3

2

]T

= L1 + L2 +
3L3

2

= 1 +
L3

2
, using eqn (3.59),

= 1 +
y

2
, using eqn (3.62),

and

U2(x, y) = [L1 L2 L3]
[
3
2 1 3

2

]T

=
3L1

2
+ L2 +

3L3

2

= 1 +
(L1 + L2)

2
, using eqn (3.59),

= 1 +
y

2
, using eqn (3.62).

Thus this two-element solution again yields the exact solution, which is to be
expected since the exact solution is linear.

In Section 3.7 it was seen that rectangular elements are, in general, non-
conforming elements. This triangle, however, is always a conforming element.
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B
A

[1]

[2]

ũ2

ũ1

Fig. 3.27 Two adjacent triangular elements with a common side AB showing continuity
of ue across AB.

Consider two adjacent elements as shown in Fig. 3.27. Suppose that the
equation of side AB is

y = mx + c;

then, using eqn (3.68), ũe is given along AB in the form

ũe = α0 + α1x,

i.e. ũe is linear and hence α0 and α1 can be obtained uniquely in terms of the
nodal values at A and B. Hence ũe is continuous across the common side, so
that the triangular element is a conforming element.

In this chapter, the finite element method has been developed in terms of a
piecewise application of the Galerkin weighted residual method, and the general
procedure was summarized at the end of Section 3.5. An alternative method of
setting up the finite element equations is discussed in Chapter 5.

Two elements have been developed in detail for Poisson’s equation. In each
of these elements the function variation was linear; such elements are called
first-order elements. In a similar manner, higher-order elements, i.e. those with
function variation which is quadratic, cubic etc., may be developed using suitable
shape functions. These will be discussed in the next chapter.

3.9 Exercises and solutions

Exercise 3.1 A triangular element has nodes at the points (0, 0), (1, 0) and
(0, 1). There are three degrees of freedom at each node, these being u, ∂u/∂x

and ∂u/∂y, giving a total of nine degrees of freedom for the element. If u is given
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throughout the element in terms of the generalized coordinates by

u(x, y) = c0 + c1x + c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + c7(x2y + xy2) + c8y

3,

obtain the matrix C, as given by eqn (3.7), and show that it is singular.

Exercise 3.2 The shape functions for a finite element are Ne
i (x, y), i = 1, . . . , m.

Show that with these interpolation functions, if the element is capable of recov-
ering an arbitrary linear form for the unknown, then∑

i∈e

Ne
i = 1,

∑
i∈e

Ne
i xi = x,

∑
i∈e

Ne
i yi = y.

Exercise 3.3 Consider the two-point boundary-value problem of Example 3.1,

−u′′ = 2, 0 < x < 1, u(0) = u′(1) = 0.

Find finite element solutions using (i) four elements with nodes at x = 0,
1
8 , 1

4 , 1
2 , 1; (ii) five identical elements; (iii) ten identical elements.

Exercise 3.4 Given the two-point boundary-value problem

−u′′ = 2, 0 < x < 1, u(0) = 1, u′(1) = 0,

find the solution at x = 1
4 using (i) two elements; (ii) three elements.

Exercise 3.5 Consider the two-point boundary-value problem

−u′′ = ex, 0 < x < 1, u(0) = u(1) = 0.

Find the solution using (i) four linear elements; (ii) ten linear elements.

Exercise 3.6 Repeat Exercise 3.5, but instead of integrating NeT

ex exactly
throughout each element, replace ex by a linear interpolation between its nodal
values.

Exercise 3.7 Obtain the element stiffness matrix for the generalized Poisson
equation

−div(κ grad u) = f.

Show that for a Robin boundary condition given by κ grad u.n + σu = h on C2,
the matrices k̄e and f̄e are still given by eqns (3.46) and (3.48).

Exercise 3.8 For problems involving material anisotropy, the field variable q is
related to the ‘potential’ function u by

q = −κ grad u.

Obtain an expression for the element stress matrix.
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Exercise 3.9 The one-dimensional form of the Poisson equation is

− d

dx

(
k(x)

du

dx

)
= f(x).

This equation is to be solved using linear elements. In one of these elements, the
material property changes discontinuously from k1 to k2; see Fig. 3.28. Obtain
the stiffness matrix for this element.

Exercise 3.10 For the problem of Exercise 3.3(i), set up the overall stiffness and
nodal force matrices using suitable Boolean selection matrices.

Exercise 3.11 Poisson’s equation, −∇2u = f , is to be solved using linear trian-
gular elements. By interpolating f(x, y) throughout the element in terms of its
nodal values, find the element nodal force vector.

Exercise 3.12 A region is divided into 12 elements with the node numbering as
shown in Fig. 3.29. What is the value d of the semi-bandwidth of the overall
stiffness matrix?

Renumber the nodes so as to reduce the value of d. What is the minimum
possible value of d?

Exercise 3.13 Consider the problem

−∇2u = 2(x + y) − 4

2

21

= (x-xm)-

h

h

xmx0

k1 k2

ξξ0

Fig. 3.28 Linear element in which k(x) changes discontinuously at x0; k1 and k2 are
constants.

2

8

431

11 129
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[10]

[9]

76

[12]
[7]

[5]

[6]

[1]

[2]

[3]

[8][4]

5

10

Fig. 3.29 A finite element grid consisting of 12 elements and 12 nodes.
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in the square whose vertices are at (0,0), (1,0), (1,1), (0,1). The boundary
conditions are

u(0, y) = y2, u(x, 0) = x2, u(1, y) = 1 − y, u(x, 1) = 1 − x.

Find the finite element solution using four bilinear rectangular elements.

Exercise 3.14 The linear triangle of Section 3.8 is to be used to solve Poisson’s
equation within a region bounded by a closed curve C. The boundary condition
on a part C2 of the boundary is of the Robin type ∂u/∂n + σu = h. Suppose
that element [e] has side 3,1 as part of the polygonal approximation to C (see
Fig. 3.25), and σ and h are interpolated along this side in terms of their nodal
values. Obtain expressions for k̄ and f̄ .

Exercise 3.15 Repeat Exercise 3.13 using four triangular elements.

Exercise 3.16 In this problem, u satisfies Laplace’s equation in the region in the
first quadrant bounded by the parabola y = 1 − x2 and the coordinate axes. The
boundary conditions are as follows.

On the parabola, u = −1 + 3x − x2; on the x-axis, u = 3x − 2; and on the y-
axis, ∂u/∂n + 2u = 2y − 7. Find the solution using the four triangular elements
shown in Fig. 3.30.

Exercise 3.17 Find the solution to Poisson’s equation −∇2u = 2 in the region
of Exercise 3.16 subject to the boundary conditions u = −1 + 3x − 2x2 on the
parabola, u = −2 + 3x − x2 on the x-axis and ∂u/∂n + 2u = 2y − 7 on the y-
axis.

Exercise 3.18 Poisson’s equation −∇2u = 2 is to be solved using triangular
elements. Two different meshes are to be used, parts of which are shown in
Fig. 3.31. Obtain row 5 of the overall equilibrium equation in each case. This
form of Poisson’s equaion is often called the torsion equation.

Exercise 3.19 A three-dimensional problem possesses axial symmetry. Obtain
the element stiffness matrix for the triangular element shown in Fig. 3.32 when
the governing equation is Poisson’s equation,

6

4 [4]

[2]

[3][1]

1

5

3
x

y

2

Fig. 3.30 Finite element idealization for the problem of Exercise 3.16.
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h

h
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Fig. 3.31 Finite element idealizations of a square region using triangular elements.

z

3

2r

1

Fig. 3.32 The triangular element for the solution of Poisson’s equation with axial
symmetry.

(3.74) −∂2u

∂r2
− 1

r

∂u

∂r
− ∂2u

∂z2
= f(r, z),

where r and z are the usual cylindrical polar coordinates.

Exercise 3.20 For the axisymmetric problem of Exercise 3.19, obtain the element
force vector.

Exercise 3.21 The three-dimensional problem of Exercise 3.19 is subject to a
Robin boundary condition

∂u

∂n
+ σ(S)u = h(S)

on a part S2 of the boundary. If the element [e] has side 3,1 as a boundary side,
obtain the contributions to the element stiffness and force matrices from the
boundary condition on S2.

Exercise 3.22 Poisson’s equation in three dimensions is to be solved using
rectangular brick elements as shown in Fig. 3.33. Using the variables ξ0 = ξξi,
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b

c
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(xm, ym, zm)
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3 z
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6

2

4

7

x

c

Fig. 3.33 The rectangular brick element; local coordinates are given by ξ = (2/a)(x −
xm), η = (2/b)(y − ym), ζ = (2/c)(z − zm).

z

x

y

1

2
3

4

Fig. 3.34 Tetrahedral element with four nodes.

η0 = ηηi and ζ0 = ζζi, where (ξi, ηi, ζi) are the coordinates of node i (Zienkiewicz
et al. 2005), obtain an expression for the element stiffness matrix.

Exercise 3.23 The three-dimensional equivalent of the plane triangle is the
tetrahedral element as shown in Fig. 3.34. Analogous to the area coordinates
given by eqns (3.58) and (3.59) are the volume coordinates (L1, L2, L3, L4). The
relationship between the global coordinates and volume coordinates is given by

x = x1L1 + x2L2 + x3L3 + x4L4,

with similar formulae for y and z; also, L1 + L2 + L3 + L4 = 1.
Given the integration formula∫ ∫ ∫

V

Lm
1 Ln

2Lp
3L

q
4 dx dy dz =

6V m!n!p!q!
(m + n + p + q + 3)!

,

obtain the element stiffness matrix for Poisson’s equation.

Exercise 3.24 Consider eqn (3.2) in the special case f ≡ λu. If the boundary
conditions are homogeneous, then the problem is an eigenvalue problem

Lu = λu in D, Bu = 0 on C.
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Show that the finite element method leads to a generalized matrix eigenvalue
problem of the form

KU = λMU,

where K is the usual overall stiffness matrix. M is often called the overall mass
matrix and is obtained from the element mass matrices, which are given by

me =
∫ ∫

[e]

NeT

Ne dx dy.

Use this result to find an approximation to the lowest eigenvalue for the problem

−u′′ = λu, 0 < x < 1, u(0) = u(1) = 0,

(i) using two elements; (ii) using three elements; (iii) using ten elements.

Solution 3.1

u =
[
1 x y x2 xy y2 x3 (x2y + y2x) y3

]
[c0 . . . c8]

T
.

At node 1, (0, 0),

u = c0,
∂u

∂x
= c4,

∂u

∂y
= c2.

At node 2, (1, 0),

u = c0 + c1 + c3 + c6,
∂u

∂x
= c1 + 2c3 + 3c6,

∂u

∂y
= c2 + c4 + c7.

At node 3, (0, 1),

u = c0 + c2 + c5 + c8,
∂u

∂x
= c1 + c4 + c7,

∂u

∂y
= c2 + 2c5 + 3c8.

Thus the non-zero terms in C are
1 2 3 4 5 6 7 8 9⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1 1 1 1

1 2 3
1 1 1

1 1 1 1
1 1 1

1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since columns 5 and 8 are equal, it follows that C is singular.
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Solution 3.2 In terms of the nodal values, the unknown is given in element
[e] by

ũe =
∑
i∈e

Ne
i Ui.

If the representation is capable of recovering an arbitrary linear form for ũe, then
it must certainly be able to recover the three forms ũe ≡ 1, ũe ≡ x and ũe ≡ y.
Thus

∑
i∈e

Ne
i = 1,

∑
i∈e

Ne
i xi = x,

∑
i∈e

Ne
i yi = y.

Solution 3.3 (i) Using the results of Example 3.1,

k1 =
1

1/8

1[
1

−1

2

−1
1

]
1

2
, k2 =

1
1/8

2[
1

−1

3

−1
1

]
2

3
,

k3 =
1

1/4

3[
1

−1

4

−1
1

]
3

4
, k4 =

1
1/2

4[
1

−1

5

−1
1

]
4

5
,

f1 =
1
8

[
1
1

]
1

2
, f2 =

1
8

[
1
1

]
2

3
, f3 =

1
4

[
1
1

]
3

4
, f4 =

1
2

[
1
1

]
4

5
.

Thus the overall matrices are, after suppressing the fixed freedom given by
U1 = 0,

K =

2⎡
⎢⎢⎣

16

sym

3

−8
12

4

−4
6

5

−2
2

⎤
⎥⎥⎦

2

3

4

5

, F =

⎡
⎢⎢⎢⎢⎣

1
6

3
8

3
4

1
2

⎤
⎥⎥⎥⎥⎦

2

3

4

5

.

Thus the overall system of equations KU = F yields the solution

U2 = 15
64 , U3 = 7

16 , U4 = 3
4 , U5 = 1.

(ii) In this case all element matrices are identical and are given by

ke =
1

1/5

[
1 −1

−1 1

]
, fe =

1
5

[
1
1

]
.
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Thus the overall matrices are, after suppressing the fixed freedom given by
U1 = 0,

K =

2⎡
⎢⎢⎢⎢⎣

10
3

−5
10

4

−5
10

5

−5
10

6

−5
5

⎤
⎥⎥⎥⎥⎦

2

3

4

5

6

, F =
1
5

⎡
⎢⎢⎢⎢⎣

2
2
2
2
1

⎤
⎥⎥⎥⎥⎦

2

3

4

5

6

.

Thus the overall system of equations yields the solution

U2 = 9
25 , U3 = 16

25 , U4 = 21
25 , U5 = 24

25 , U6 = 1.

A comparison of these results with the two- and four-element solutions (Exam-
ple 3.1), together with the exact solution, is given in Table 3.2.

(iii) The spreadsheet is shown in Fig. 3.35 and a comparison with other
solutions is shown in Table 3.2.

Solution 3.4 (i) Take the three nodes at x = 0, 1
4 , 1; then the element stiffness

and force matrices are, using the results of Example 3.1,

k1 = 4

1[
1

−1

2

−1
1

]
1

2
, k2 =

4
3

2[
1

−1

3

−1
1

]
2

3
,

f1 =
1
4

[
1
1

]
1

2
, f2 =

3
4

[
1
1

]
2

3
.

The overall matrices are thus given by

K = 4

1⎡
⎢⎣

1

sym

2

−1
4
3

3

0
− 1

3
1
3

⎤
⎥⎦

1

2

3

, F =
1
4

⎡
⎣ 1

4
3

⎤
⎦ 1

2

3

.

Enforcing the non-homogeneous Dirichlet boundary condition U1 = 1 gives the
overall system of equations

16
3 U2 − 4

3U3 = 1 − (−4),

− 4
3U2 + 4

3U3 = 3
4 − 0.

Thus

U2 = 21
16 , U3 = 3

2 .
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Fig. 3.35 Spreadsheet for ten-element solution to Exercise 3.3.
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(ii) Take the four nodes at x = 0, 1
4 , 1

2 , 1; then the overall matrices may be
obtained in a similar manner to that in (i). In this case

K = 4

1⎡
⎢⎢⎣

4

sym

2

−4
8

3

0
−4

6

4

0
0

−2
2

⎤
⎥⎥⎦

1

2

3

4

, F =
1
4

⎡
⎢⎢⎣

1
2
3
2

⎤
⎥⎥⎦

1

2

3

4

.

Enforcing the non-homogeneous Dirichlet boundary condition U1 = 1 and solving
the resulting system of equations gives

U2 = 23
16 , U3 = 7

4 , U4 = 2.

The exact solution at x = 1
4 is 23

16 .

Solution 3.5 (i) The element stiffness matrices are given in Example 3.1 as

ke =
1
h

[
1 −1

−1 1

]
,

where h is the element length. Using the notation of Fig. 3.7, the element force
vector is given by

fe =
∫ 1

−1

1
2

[(1 − ξ) (1 + ξ)]T exm+hξ/2 h

2
dξ

= exm

[(
1 +

2
h

)
sinh

h

2
− cosh

h

2

(
1 − 2

h

)
sinh

h

2
+ cosh

h

2

]T

= exm [0.12011 0.13054]T , since h = 0.25.

Thus

f1 =
[

0.13610
0.14792

]
, f2 =

[
0.17476
0.18994

]
, f3 =

[
0.22439
0.24389

]
, f4 =

[
0.28813
0.31315

]
.

The overall stiffness matrix is given in Example 3.1, so that the equations for the
unknown nodal values U2, U3, U4 (see Fig. 3.10) are, after enforcing the essential
Dirichlet boundary conditions,

8U2 −4U3 = 0.32268,

−4U2 +8U3 −4U4 = 0.41433,

−4U3 +8U4 = 0.53202.

Solving yields U2 = 0.1455, U3 = 0.2104, U4 = 0.1717. These solutions may be
compared with the exact solution and the classical Rayleigh–Ritz solution given
in Table 2.5 and shown in Fig. 3.36, from which it is seen that the finite element
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Fig. 3.36 Comparison of the finite element solution and the classical Rayleigh–Ritz
solution with the exact solution for Exercise 3.5.

solution is far superior. Once again we observe superconvergence, with the finite
element solution being exact at the nodes.

(ii) Using the result of part (i),

fe = exm [0.049187 0.050854]T .

K is the tridiagonal matrix

�20 − 10;−10 20 − 10; . . . ;−10 20 − 10;−10 20�

and, enforcing the essential boundary condition,

F = [ 0.110609 0.122242 0.135098

0.149307 0.165010 0.182364

0.201543 0.222740 0.246165 ]T ,

so that

U = [ 0.066657 0.122254 0.165626

0.195488 0.210420 0.208850

0.189045 0.149085 0.086851 ]T .

Again, these nodal values are exact.
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Solution 3.6 In element [e], approximate ex by

ex ≈ 1
2

[(1 − ξ) (1 + ξ)]
[
exm−h/2 exm+h/2

]T

.

Then

fe =
(∫ 1

−1

1
4

[
1 − ξ

1 + ξ

]
[(1 − ξ) (1 + ξ)]

h

2
dξ

)[
exm−h/2

exm+h/2

]

=
h

6
exm

[
2e−h/2 + eh/2 e−h/2 + 2eh/2

]T

= exm [0.12076 0.13120]T , since h = 0.25.

Thus

f1 =
[

0.13683
0.14860

]
, f2 =

[
0.17570
0.19089

]
, f3 =

[
0.22560
0.24511

]
, f4 =

[
0.28968
0.31473

]
.

It follows, as in Exercise 3.5, that the equations for the unknowns U2, U3, U4 are

8U2 −4U3 = 0.32437,

−4U2 +8U3 −4U4 = 0.41649,

−4U3 +8U4 = 0.53479.

Solving yields U2 = 0.1463, U3 = 0.2115, U4 = 0.1726. This solution is compared
with the solution of Exercise 3.5, in which the exponential term is integrated
exactly, in Table 3.4.

Solution 3.7 For the generalized Poisson equation

−div(κ grad u) = f,

we use Galerkin’s method just as in Section 3.6:∫ ∫
D

(−div(κ grad ũ) − f) wi dx dy = 0, i = 1, 2, . . . , n.

Using the first form of Green’s theorem, this becomes∫ ∫
D

grad wi · (κ grad ũ) dx dy −
∮

C

wi(κ grad ũ) · n ds

−
∫ ∫

D

fwi dx dy = 0, i = 1, 2, . . . , n.

Therefore the element stiffness matrix is

ke =
1
2

∫ ∫
[e]

αT (κ + κT )αdx dy.
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Table 3.4 A comparison of the solutions to Exercises 3.5 and 3.6

x 0 0.25 0.5 0.75 1

Interpolation of ex 0 0.1463 0.2115 0.1726 0
Exact integration of ex 0 0.1455 0.2104 0.1717 0
Exact solution 0 0.1455 0.2104 0.1717 0

When κ is symmetric,

ke =
∫ ∫

[e]

αT κα dx dy.

Using the Robin boundary condition gives the contribution from the boundary
integral as ∫

Ce
2

wi(h − σwj) ds,

and it follows that the matrices k̄e and f̄e are unchanged.

Solution 3.8 In element [e], the field variable is related to the ‘potential’ by

q̃e = −κ grad ũe

= −κ

[
∂/∂x

∂/∂y

]
NeUe

= −καeUe.

Thus

Se = −καe.

Solution 3.9 The shape function matrix is

Ne =
1
2

[(1 − ξ) (1 + ξ)] ;

thus

α =
1
h

[−1 1] .

Now κ = [k(x)], so that, using Exercise 3.6,

ke =
1
2h

∫ 1

−1

k(x)
[

1 −1
−1 1

]
dξ

=
1
2h

[
1 −1

−1 1

](∫ ξ0

1

k1 dξ +
∫ 1

ξ0

k2 dξ

)
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=
1
2h

{(k1 + k2) + ξ0(k1 − k2)}
[

1 −1
−1 1

]
,

where ξ0 = 2(x0 − xm)/h. We notice that if k1 = k2 = k (constant), then we
recover the form developed in Example 3.1.

Solution 3.10 The element stiffness and force matrices are given in the solution
to Exercise 3.3(i). If U is the vector of overall nodal values, then the vector of
element nodal values Ue is given by eqn (3.49),

U3 = a3U.

Now,

U = [U1 U2 U3 U4 U5]
T

and

U1 = [U1 U2]
T

, U2 = [U2 U3]
T

, U3 = [U3 U4]
T

, U4 = [U4 U5]
T

.

Thus

a1 =

1[
1

2

1

3 4 5]
, a2 =

1[ 2

1
3

1

4 5]
,

a3 =

1[ 2 3

1
4

1

5]
, a4 =

1[ 2 3

1
4

1

5]
.

Equations (3.50) and (3.51) give the overall stiffness and nodal force matrices as

K =
∑

e

aeT

keae and F =
∑

e

aeT

fe.

Now,

a1T

k1a1 =

⎡
⎢⎢⎢⎢⎣

1
1

⎤
⎥⎥⎥⎥⎦

[
8 −8

−8 8

] [
1

1

]

=

1⎡
⎢⎢⎢⎢⎣

8
−8

2

−8
8

3 4 5⎤
⎥⎥⎥⎥⎦

1

2

3

4

5
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and

a1T

f1 =

⎡
⎢⎢⎢⎢⎣

1
1

⎤
⎥⎥⎥⎥⎦

[ 1
8

1
8

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
8

1
8

⎤
⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

.

Similarly,

a2T

k2a2 =

1⎡
⎢⎢⎢⎢⎣

2

8
−8

3

−8
8

4 5⎤
⎥⎥⎥⎥⎦

1

2

3

4

5

, a2T

f2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
8

1
8

⎤
⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

,

a3T

k3a3 =

1⎡
⎢⎢⎢⎢⎣

2 3

4
−4

4

−4
4

5⎤
⎥⎥⎥⎥⎦

1

2

3

4

5

, a3T

f3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
4

1
4

⎤
⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

,

a4T

k4a4 =

1⎡
⎢⎢⎢⎢⎣

2 3 4

2
−2

5

−2
2

⎤
⎥⎥⎥⎥⎦

1

2

3

4

5

, a4T

f4 =

⎡
⎢⎢⎢⎢⎢⎢⎣ 1

2

1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

.

Thus

K =

1⎡
⎢⎢⎢⎢⎣

8

sym

2

−8
16

3

−8
12

4

−4
6

5

−2
2

⎤
⎥⎥⎥⎥⎦

1

2

3

4

5

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
8

1
4

3
8

3
4

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

.

Solution 3.11 Interpolating f(x, y) throughout the element gives

f(x, y) ≈ [L1 L2 L3]

⎡
⎣ f(x1, y1)

f(x2, y2)
f(x3, y3)

⎤
⎦

= [L1 L2 L3] s, say.
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Thus, using eqn (3.70),

fe =
∫ ∫

A

[L1 L2 L3]
T

f(x, y) dx dy

≈
⎛
⎝∫ ∫

A

⎡
⎣ L2

1 L1L2 L1L3

L2L1 L2
2 L2L3

L3L1 L3L2 L2
3

⎤
⎦ dx dy

⎞
⎠ s,

i.e.

fe = Λs,

where

Λ =
A

12

⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦ .

Solution 3.12 The maximum difference in node numbers for any element is 7;
this occurs in elements 2 and 11. Thus d = 7 + 1 = 8. There are many ways to
reduce this value; the minimum is obtained by numbering across the region as
shown in Fig. 3.37. In this case the maximum difference in node numbers for any
element is 4. Thus d = 4 + 1 = 5. This exercise illustrates the general strategy
that nodes should be numbered across the narrowest part of the region.

Solution 3.13 Suppose that the square is divided into four square elements as
shown in Fig. 3.38. Using eqn (3.54), the element stiffness matrices are of the
form

ke =
1
6

⎡
⎢⎢⎣

4 −1 −2 −1
4 −1 −2

4 −1
sym 4

⎤
⎥⎥⎦ .

3

2

1 4 7 10

11

1296

5 8

Fig. 3.37 Node-numbering system which yields the minimum semi-bandwidth for the
region of Fig. 3.29.
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3 6 9

8

741

2 5

[4][3]

[1] [2]

x

y

Fig. 3.38 Four-element discretization of the region in Exercise 3.13.

Using the notation of Fig. 3.19, the element force vectors are given by

fe =
∫ 1

−1

∫ 1

−1

[
2
(

xm +
aξ

2

)(
ym +

bη

2

)
− 4

]
1
4

× [(1 − ξ)(1 − η) (1 + ξ)(1 − η) (1 − ξ)(1 + η) (1 + ξ)(1 + η)]T
ab

4
dξ dη.

Since a = b = 1
2 ,

fe =
1
8
(xmym − 2) [1 1 1 1]T

+
ym

96
[−1 1 − 1 1]T

+
xm

96
[−1 − 1 1 1]T

+
1

1152
[1 − 1 − 1 1]T .

Now, node 5 is the only node where a Dirichlet boundary condition does not
act; thus only the contributions to the equation corresponding to node 5 need
be assembled. Row 5 of K is

1
3

[−2 − 1 − 1 − 2 − 1 − 1 4 + 4 + 4 + 4 − 1 − 1 − 2 − 1 − 1 − 2] .

Also, F5 = f1
3 + f2

4 + f3
2 + f4

1 , where the subscripts refer to the local node num-
bering given in Fig. 3.19:

f1
3 = −35/144, f2

4 = −31/144, f3
2 = −2/9, f4

1 = −7/8.

Thus

F5 = −7
8
.
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Table 3.5 A comparison of finite element solutions in Exercises 3.13 and 3.15

(x, y)
( 1

4 , 1
4

) ( 1
2 , 1

2

) ( 3
4 , 3

4

) ( 1
4 , 1

2

) ( 1
4 , 3

4

) ( 1
2 , 3

4

)
4 rectangular
elements (Exercise 3.13) 0.193 0.273 0.318 0.262 0.506 0.387
4 triangular
elements (Exercise 3.15) 0.125 0.25 0.25 0.25 0.395 0.375
Exact solution 0.094 0.25 0.281 0.219 0.438 0.344

Since

U1 = 0, U2 = 1
4 , U3 = 1, U4 = 1

4 ,

U6 = 1
2 , U7 = 1, U8 = 1

2 , U9 = 0,

it follows that the equation for U5 is

16
3 U5 = − 7

8 + 1
3 .7,

which yields U5 = 0.27344.
By virtue of the interpolation (3.53), the function value at the midpoint

of each element, i.e. at the point where ξ = η = 0, is just the mean of the
nodal values, and values along interelement boundaries are found by linear
interpolation from the nodal values. These values are compared with the corre-
sponding values obtained using triangular elements with and the exact solution,
u0(x, y) = (1 − x)y2 + (1 − y)x2, in Table 3.5.

Solution 3.14 On side 3,1, σ = σ1L1 + σ3(1 − L1). Then, using eqn (3.72),

k̄ =
(
b2
2 + c2

2

)1/2

×
∫ 1

0

⎡
⎣ σ1L

3
1 + σ3

(
L2

1 − L3
1

)
0 σ1

(
L2

1 − L3
1

)
+ σ3L1

(
1 − L2

1

)
0 0

sym σ1L1(1 − L1)2 + σ3(1 − L1)3

⎤
⎦ dL1

=
(
b2
2 + c2

2

)1/2

⎡
⎣ 3σ1 + σ3 0 σ1 + σ3

0 0
sym σ1 + 3σ3

⎤
⎦ .

Similarly, using eqn (3.73),

f̄ =

(
b2
2 + c2

2

)1/2

6
[2h1 + h3 0 h1 + 2h3]

T
.

Solution 3.15 Notice that the problem has symmetry about the line y = x; thus,
consider only the region shown in Fig. 3.39. Along the line y = x, ∂u/∂n = 0.
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3 5

[3]

[1]

[2]

[4]

4

n

6

2

1

y

y =x

x

Fig. 3.39 Finite element idealization for the problem of Exercise 3.15.

The element stiffness matrices may be obtained directly from eqn (3.69) or by
using the results of Example 3.4; in either case, they are found to be given by

k1 =

1⎡
⎣ 2

0
−2

4

0
2

−2

2

−2
−2

4

⎤
⎦ 1

4

2

, k2 =

5⎡
⎣ 2

0
−2

2

0
2

−2

4

−2
−2

4

⎤
⎦ 5

2

4

,

k3 =

2⎡
⎣ 2

0
−2

5

0
2

−2

3

−2
−2

4

⎤
⎦ 2

5

3

, k4 =

4⎡
⎣ 2

0
−2

6

0
2

−2

5

−2
−2

4

⎤
⎦ 4

6

5

.

The element force vector is given by eqn (3.70) as

fi =
∫ ∫

A

Li [2(x + y) − 4] dx dy, i = 1, 2, 3,

where 1, 2, 3 is the local nodal numbering defined in Fig. 3.24. Then, using
eqn (3.60) and (3.61),

fi =
∫ ∫

A

Li [2L1(x1 + y1) + 2L2(x2 + y2) + 2L3(x3 + y3) − 4] dx dy

= 1
24 (xi + yi) + 1

48 (xj + yj) + 1
48 (xk + yk) − 1

6 .

The only node without an essential boundary condition is node 4; thus only the
equation associated with node 4 is assembled. This equation is

∑6
j=1 K4jUj = F4,

where K and F are the overall stiffness and force matrices, respectively. Row 4
of K is [0 − 1 2 − 1 0], and F4 = f1

2 + f2
3 + f4

1 ; the subscripts refer to the local
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nodal numbers in Fig. 3.24. We obtain

f1
2 = 1

24

(
1
2 + 1

2

)
+ 1

48

(
0 + 1

2

)
+ 1

48 (0 + 0) − 1
16 = − 11

96 ,

f2
3 = 1

24

(
1
2 + 1

2

)
+ 1

48

(
1
2 + 1

)
+ 1

48

(
0 + 1

2

)− 1
6 = − 8

96 ,

f4
1 = 1

24

(
1
2 + 1

2

)
+ 1

48 (1 + 1) + 1
48

(
1
2 + 1

)− 1
6 = − 5

96 ;

therefore F4 = − 1
4 .

The essential boundary conditions give

U1 = 0, U2 = 1
4 , U3 = 1, U5 = 1

2 , U6 = 0,

so that U4 is given by

− 1
4 + 2U4 − 1

2 = − 1
4 ,

which gives U4 = 1
4 .

The solution at
(

1
4 , 1

4

)
,
(

1
4 , 3

4

)
,
(

1
4 , 1

2

)
,
(

1
2 , 3

4

)
and

(
3
4 , 3

4

)
is found by linear

interpolation between nodes 1 and 4, 2 and 5, 2 and 4, and 4 and 6. The results
are compared with the corresponding results obtained using rectangular elements
in Table 3.5.

Solution 3.16 The element stiffness matrices are given by eqn (3.69) as

k1 =

1,5⎡
⎣ 1.0021

sym

2,4

−0.5333
0.5333

4,2

−0.4687
0

0.4687

⎤
⎦ 1,5

2,4

4,2

= k2,

k4 =

4⎡
⎣ 1.1333

sym

5

−0.3
0.3

6

−0.8333
0

0.8333

⎤
⎦ 4

5

6

.

The only node at which U is unknown is node 4, and node 4 is not in element
3; thus k3 is not obtained. Since the governing differential equation is Laplace’s
equation, fe = 0.

There is a contribution to the stiffness and force matrices due to the non-
homogeneous Robin boundary condition on the y-axis. Since σ = 2 and h =
2y − 7 are linear functions, these matrices may be written down using the results
of Exercise 3.14:

k̄1 =

1⎡
⎣ 0.4267

sym

2

0
0

4

0.2133
0

0.4267

⎤
⎦ 1

2

4

, f̄1 =

⎡
⎣−2.1035

0
−1.9669

⎤
⎦ 1

2

4

,
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k̄4 =

4⎡
⎣ 0.24

sym

5

0
0

6

0.12
0

0.24

⎤
⎦ 4

5

6

, f̄4 =

⎡
⎣−0.9864

0
−0.9432

⎤
⎦ 4

5

6

.

Thus, assembling the equation for the unkown U4,

−0.2554U1 + 0U2 + 0U3 + 2.8021U4 − 0.8333U5 − 0.7133U6 = −2.9533.

The essential boundary conditions give

U1 = −2, U2 = −0.2, U3 = 1, U5 = 0.44, U6 = −1.

Therefore it follows that U4 = −1.36. This agrees with the exact solution
u0(x, y) = y + 3x − 2 at (0, 0.64), which is to be expected since the exact solution
is itself linear.

Solution 3.17 The element stiffness matrices and the force vectors due to the
Robin boundary conditions are identical with those given in Exercise 3.16. The
element force vectors due to f(x, y) ≡ 2 are given by

f1 =

⎡
⎣0.128

0.128
0.128

⎤
⎦ 1,5

2,4

4,2

= f2, f̄4 =

⎡
⎣0.072

0.072
0.072

⎤
⎦ 4

5

6

.

Thus the process of assembling the equation for the unknown U4 follows just as
in Exercise 3.16. In this case the right-hand side equals −2.6258. Enforcing the
essential boundary conditions U1 = −2, U2 = −0.56, U3 = 0, U5 = 0.08, U6 = −1
yields the solution U4 = −1.35.

Solution 3.18 The element stiffness and force matrices may be obtained from
Example 3.4 and Exercise 3.11 as

ke =
1
2

1⎡
⎣ 1

sym

2

−1
2

3

0
−1

1

⎤
⎦ 1

2

3

and

fe =
h2

3

⎡
⎣1

1
1

⎤
⎦ 1

2

3

,

where the local nodal numbering is defined in Fig. 3.40.



136 The Finite Element Method

3

21

Fig. 3.40 Local node numbering for the triangles in Exercise 3.18.

For the idealization of Fig. 3.31(a), row 5 of the overall system of equations is

1
2 [−1 + (−1) 0 + 0 − 1 + (−1) 1 + 1 + 2 + 1 + 1 + 2

−1 + (−1) 0 + 0 − 1 + (−1)] [U2 . . . U8]
T

= 1
3h2(1 + 1 + 1 + 1 + 1 + 1),

i.e.

1
h2

(U2 + U4 + U6 + U8 − 4U5) = −2.

This is the usual five-point finite-difference replacement for Poisson’s equation
(Smith 1985).

For the idealization of Fig. 3.31(b), row 5 of the overall system of equations
is

1
2 [0 + 0 − 1 + (−1) 0 + 0 − 1 + (−1) 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

−1 + (−1) 0 + 0 − 1 + (−1) 0 + 0] [U1, . . . , U9]
T

= 1
3h2(1 + 1 + 1 + 1 + 1 + 1),

i.e.

1
h2

(U2 + U4 + U6 + U8 − 4U5) = − 8
3 .

Solution 3.19 Poisson’s equation (3.74) may be rewritten as

− ∂

∂r

(
r
∂u

∂r

)
− ∂

∂z

(
r
∂u

∂z

)
= rf(r, z)

and, comparing with eqn (3.1), it follows that

kij =
∫ ∫

A

r
(bibj + cicj)

4A2
2πr dr dz.
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In this case the integral arising in kij is a volume integral in which dV =
2πr dr dz. Now, r = r1L1 + r2L2 + r3L3; thus

r2 = [r1 r2 r3]

⎡
⎣ L2

1 L1L2 L1L3

L2L1 L2
2 L2L3

L3L1 L3L2 L2
3

⎤
⎦

⎡
⎣ r1

r2

r3

⎤
⎦ .

Using the result of Exercise 3.11, it follows that∫ ∫
A

r2 dr dz = xT Λx,

where x = [r1 r2 r3]
T and Λ is defined in Exercise 3.11. Defining

R2
0 =

1
A

xT Λx =
1
6
(
r2
1 + r2

2 + r2
3 + r1r2 + r2r3 + r3r1

)
,

it follows that

kij =
π

2A
R2

0(bibj + cicj).

In practice, in the integration for kij , the value of r is often replaced by r̄ =
1
3 (r1 + r2 + r3), which is the radial coordinate of the centroid of the triangle. In
this case

kij =
π

2A
r̄2(bibj + cicj).

The difference between the stiffness coefficients in the two cases arises only from
the difference between r̄2 and R2

0. This difference is usually small; for example, if
r1 = 2, r2 = 4 and r3 = 3, r̄2 = 9 and R2

0 = 9.167; the relative difference is thus
approximately 1.8 per cent.

Solution 3.20 By reference to eqn (3.70), the element force vector may be
written as

fi =
∫ ∫

A

rf(r, z)Li2πr dr dz.

In the case f = constant, eqn (3.73) gives

fi = 2πf

∫ ∫
A

r2Li dr dz.

Replacing r2 by r̄r (see Exercise 3.19),

fi = 2πr̄f

∫ ∫
A

(L1r1 + L2r2 + L3r3) Li dr dz

= 1
6πr̄Af (2ri + rj + rk) .
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Notice that in this case the source term f is not evenly distributed between
the nodes as in the case of two-dimensional problems, see Exercise 3.11, with
f(x, y) = f .

Solution 3.21 By comparison with eqns (3.46) and (3.48),

k̄e =
∫

Se
2

σ(S)NeT

Ne dS

and

f̄e =
∫

Se
2

h(S)NeT

dS,

where the integrals are taken over the boundary Se
2 of element [e], where the

Robin boundary condition holds. Thus if σ is a constant, it follows that

k̄e = 2πσ
(
b2
2 + c2

2

)1/2
∫ 1

0

⎡
⎣ L2

1 0 L1 − L2
1

0 0 0
L1 − L2

1 0
(
1 − L2

1

)
⎤
⎦ [r1L1 + r3(1 − L1)] dL1

(cf. eqn (3.72)). Therefore

k̄e =
πσ

6
(
b2
2 + c2

2

)1/2

⎡
⎣ 3r1 + r3 0 r1 + r3

0 0 0
r1 + r3 0 r1 + 3r3

⎤
⎦ .

Similarly, if h is a constant,

f̄e =
πh

3
(
b2
2 + c2

2

)1/2

⎡
⎣ 2r1 + r3

0
r1 + 2r3

⎤
⎦ .

Solution 3.22 The shape functions are given by

Ni(ξ, η, ζ) = 1
8 (1 + ξ0)(1 + η0)(1 + ζ0), i = 1, . . . , 8,

and the element stiffness matrix is given by

kij =
∫ ∫ ∫

V

(
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
+

∂Ni

∂z

∂Nj

∂z

)
dx dy dz.

Now,

∂Ni

∂x

∂Nj

∂x
=

ξiξj

16a2
[1 + ηiηjη

2 + (ηi + ηj)η][1 + ζiζjζ
2 + (ζi + ζj)ζ].

Thus ∫ ∫ ∫
V

∂Ni

∂x

∂Nj

∂x
dx dy dz =

bc

144a
ξiξj(3 + ηiηj)(3 + ζiζj).
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The other two terms in the integral for kij may be obtained by cyclic permuta-
tion.

Solution 3.23 The volume coordinates may be written in terms of the global
coordinates as follows:

Li = (ai + bix + ciy + diz)/6V,

where

ai =

∣∣∣∣∣∣
xj yj zj

xk yk zk

xl yl zl

∣∣∣∣∣∣ , bi = −
∣∣∣∣∣∣

1 yj zj

1 yk zk

1 yl zl

∣∣∣∣∣∣ ,

ci = −
∣∣∣∣∣∣

xj 1 zj

xk 1 zk

xl 1 zl

∣∣∣∣∣∣ , di = −
∣∣∣∣∣∣

xj yj 1
xk yk 1
xl yl 1

∣∣∣∣∣∣ .

The shape function matrix is Ne = [L1 L2 L3 L4]. Hence

kij =
∫ ∫ ∫

V

(
∂Li

∂x

∂Lj

∂x
+

∂Li

∂y

∂Lj

∂y
+

∂Li

∂z

∂Lj

∂z

)
dx dy dz

=
1

36V
(bibj + cicj + didj).

Solution 3.24 The development of the element matrices follows exactly as in
Section 3.6, with the element force vector in this case given by (see eqn (3.47))

∫ ∫
D

NeT

λũe dx dy = λ

(∫ ∫
D

NeT

Ne dx dy

)
Ue

= λmeUe.

Thus assembling the overall system yields the generalized eigenvalue problem

KU = λMU.

The eigenvalues are given by det[K − λM] = 0. For the eigenvalue problem
−u′′ = λu, u(0) = u(1) = 0, use the linear element of Example 3.1; see Fig. 3.7.
The element stiffness matrix is

ke =
1
h

[
1 −1

−1 1

]
.



140 The Finite Element Method

The element mass matrix is given by

me =
h

8

∫ 1

−1

[
1 − ξ

1 + ξ

]
[(1 − ξ) (1 + ξ)] d ξ

=
h

6

[
2 1
1 2

]
.

(i) Using two elements, the generalized eigenvalue problem is, after enforcing
the essential homogeneous boundary condition,

4U2 = λ 1
3U2.

Thus

λ1 = 12.

(ii) Using three elements,[
6 −3

−3 6

] [
U2

U3

]
=

λ

18

[
4 1
1 4

] [
U2

U3

]
.

Thus ∣∣∣∣ 6 − 2λ/9 −3 − λ/18
−3 − λ/18 6 − 2λ/9

∣∣∣∣ = 0.

Expanding the determinant and then solving the resulting quadratic equa-
tion yields λ1 = 10.8, λ2 = 54. The exact value of λ1 is π2 ≈ 9.87.

(iii) Using ten elements, the overall matrices are 9 × 9 tridiagonal matrices given
by

K = 10�2 − 1; −1 2 − 1; . . . ; −1 2 − 1; −1 2�,
M = 1

60�4 1; 1 4 1; . . . ; 1 4 1; 1 4�.
Then, using any suitable eigenvalue routine, we find

λ1 = 10.0, λ2 = 40.8, λ3 = 95.6, . . . .

The exact values of λn are n2π2, so that λ1 is computed with an error of
about one per cent.



4 Higher-order elements:
the isoparametric concept

4.1 A two-point boundary-value problem

In Chapter 3, the finite element philosophy was developed and illustrated by
means of examples in which the interpolation functions were linear polynomials.
There is no reason to choose linear functions only; indeed, higher-order poly-
nomials are frequently used and in principle cause no more difficulty. We shall
illustrate the approach using the Galerkin finite element method of Sections
3.2–3.5.

Example 4.1

−u′′ = f(x), 0 < x < 1, u(0) = 1, u′(1) + 2u(1) = 3.

Suppose that the region 0 ≤ x ≤ 1 is divided into E elements, each element
having three nodes; a typical element is shown in Fig. 4.1. In terms of its
three nodal values, the variable u may be uniquely interpolated as a quadratic
polynomial, the interpolation being given by

ue = NeUe,

where Ue = [U1 U2 U3]
T and the shape function matrix is

Ne = 1
2

[
ξ2 − ξ 2(1 − ξ2) ξ2 + ξ

]
.

The elements of Ne are the usual quadratic Lagrange interpolation polyno-
mials; see Fig. 4.2.

The development of the method follows in exactly the same way as in
Section 3.5, and we use the notation of Section 3.6 to obtain the relevant element
matrices.

1 2

h

hxm

3
2x = (x–xm)

Fig. 4.1 The three-node element for the problem of Example 4.1.
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Fig. 4.2 Lagrange quadratic interpolation polynomials.

Thus, in this case,

αe = [d/dx]Ne

=
1
h

[2ξ − 1 − 4ξ 2ξ + 1].

Therefore

(4.1) ke =
1
h2

∫ 1

−1

⎡
⎣1 − 4ξ + 4ξ2 4ξ − 8ξ2 −1 + 4ξ2

16ξ2 −4ξ − 8ξ2

sym 1 + 4ξ − 8ξ2

⎤
⎦ h

2
dξ,

i.e.

ke =
1
3h

1 2 3⎡
⎣7 −8 1

16 −8
sym 7

⎤
⎦ 1

2

3

.

The element force vector is given by

f̄e =
∫ 1

−1

fNeT h

2
dξ

=
fh

6
[1 4 1]T

when f(x) ≡ f , a constant.
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For boundary elements, there are also contributions to the stiffness and force
matrices due to the Robin boundary conditions. These are given by

k̄e = 2NeT

Ne
∣∣∣
ξ=1

and

f̄e = 3NeT
∣∣∣
ξ=1

.

Suppose that f = 1 and the problem is to be solved using two elements with five
nodes at x = 0, 1

4 , 1
2 , 3

4 , 1. Then

k1 =

1,3 2,4 3,5⎡
⎢⎣

14
3 − 16

3
2
3

32
3 − 16

3

sym 14
3

⎤
⎥⎦

1,3

2,4

3,5

= k2,

f1 =
1,3 2,4 3,5[
1
12

1
3

1
12

]
= f2,

k̄2 =

3⎡
⎣ 0

sym

4

0
0

5

0
0
2

⎤
⎦ 3

4

5

,

f̄2 =
3[
0

4

0
5

3 ]T .

The overall stiffness and force matrices are thus

K =

1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

14
3

sym

2

− 16
3

32
3

3
2
3

− 16
3

28
3

4

0

0

− 16
3

23
3

5

0

0
2
3

− 16
3

20
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

,

F =
1[
1
12

2
1
3

3
1
6

4
1
3

5
37
12

]T .

Enforcing the essential boundary condition U1 = 1, the unknown nodal values
U2, . . . , U5 are given by

32U2 −16U3 = 17,
−16U2 +28U3 −16U4 +2U5 = − 3

2 ,

−16U3 +32U4 −16U5 = 1,
2U3 −16U4 +20U5 = 37

4 .
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Solving these equations yields

U2 = 39
32 , U3 = 11

8 , U4 = 47
32 , U5 = 3

2 .

These agree with the exact solution u0(x) = 1 + x − 1
2x2, as would be expected

since the approximation is quadratic. In a similar manner, cubic, quartic and
high-order elements may be developed using suitable Lagrange interpolation
polynomials.

4.2 Higher-order rectangular elements

The shape functions for the bilinear rectangular element, discussed in Section 3.7,
were obtained by taking products of the Lagrange linear interpolation polynomi-
als. This idea may be extended to develop higher-order rectangular elements; for
example, the shape functions for the elements in Fig. 4.3 are obtained by taking
products of Lagrange quadratic, cubic and quartic polynomials.

Although the Lagrange family is convenient to use and easy to set up, it
does have two drawbacks:

1. The elements have many internal nodes and, in the overall system, these
contribute to one element only. This may, however, be overcome by the
‘condensation’ procedure of Section 4.5.

2. The expressions for the shape functions contain relatively high-order terms,
while some lower-order terms are missing.

Probably the most useful family of rectangular elements is one in which the nodes
are placed on the element boundary. Unfortunately, simply removing the internal
nodes from elements in the Lagrange family does not yield suitable elements; see
Exercise 4.2.

The most frequently used quadratic and cubic elements are shown in Fig. 4.4.
The local coordinates for these elements are just the same as those for the bilinear
element shown in Fig. 3.19. Here, the notation ξ0 = ξξi, η0 = ηηi will be used;
see Exercise 3.22.

(a) (b) (c)

Fig. 4.3 Rectangular elements whose shape functions are Lagrange interpolation poly-
nomials: (a) quadratic; (b) cubic; (c) quartic.
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Fig. 4.4 Rectangular elements containing only boundary nodes: (a) quadratic; (b) cubic.

The shape functions are as follows:

(a) Quadratic element.
Corner nodes:

(4.2) Ni = 1
4 (1 + ξ0)(1 + η0)(ξ0 + η0 − 1).

Mid-side nodes:

(4.3) ξi = 0, Ni = 1
2 (1 − ξ2)(1 + η0); ηi = 0, Ni = 1

2 (1 + ξ0)(1 − η2).

(b) Cubic element.
Corner nodes:

Ni = 1
32 (1 + ξ0)(1 + η0)[9(ξ2 + η2) − 10].

Mid-side nodes:

Ni = 9
32 (1 + ξ0)(1 − η2)(1 + 9η0)

when ξi = ±1 and ηi = ± 1
3 ; the expression for the other mid-side nodes is

obtained by interchanging ξ and η.

These elements are conforming elements when the rectangles have sides parallel
to the coordinate axes. Whenever this is not the case, the elements may still
conform provided that along the common side the function values are expressed
in terms of the local coordinates, just as in the case of the bilinear element of
Section 3.7.

4.3 Higher-order triangular elements

The quadratic, cubic and quartic triangular elements are shown in Fig. 4.5. The
shape functions are very easy to generate in terms of the area coordinates given
by eqn (3.62).
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Fig. 4.5 Triangular elements: (a) quadratic; (b) cubic; (c) quartic.

(a) Quadratic element.
Corner nodes:

(4.4) Ni = Li(2Li − 1).

Mid-side nodes:

(4.5) N4 = 4L1L2, etc.

(b) Cubic element.
Corner nodes:

Ni = 1
2 (3Li − 1)(3Li − 2).

Side nodes:

N4 = 9
2L1L2(3L1 − 1),

N5 = 9
2L1L2(3L1 − 2), etc.

Node at centroid:

N10 = 27L1L2L3.

(c) Quartic element. The shape functions are obtained in Exercise 4.5.

For all these triangular elements, the function values along a side are
uniquely determined by the nodal values on that side. Consequently, these
elements are conforming elements. The element matrices for both triangular and
rectangular elements are obtained in the usual way; however, it is not difficult
to see that the integrals involved make hand calculation impracticable for the
cubic and higher-order elements. For this reason, it is usual to use numerical
integration to obtain the matrices.

The matrices for the quadratic rectangle and triangle are obtained in closed
form in Exercises 4.3 and 4.4, respectively. It is worth remembering here that the
reason for the introduction of higher-order elements is to get a better polynomial
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approximation for a given number of elements. Improvements may also be made
by refining the finite element mesh. Which procedure is the ‘better’ from a
practical point of view is not known. This point was discussed by Desai and Abel
(1972), who cited an example due to Clough (1969) in which mesh refinement
was found to be better for one problem, whereas higher-order elements provided
a better approximation for another.

It is beyond the scope of this text to deal in any detail with the subject of
which is the better method. Indeed, there is no specific criterion which states
conditions under which one process is better than the other. However, both
processes may be used in an adaptive manner, i.e. either the mesh is refined,
which is called h-refinement, or higher-order polynomials are used, which is called
p-refinement (Zienkiewicz et al. 2005).

4.4 Two degrees of freedom at each node

So far, in the generalization of the method to field problems, the nodal variables
have simply been the function values at the nodes. There is no reason why
derivatives may not also be used.

Example 4.2 Consider again the problem of Example 4.1:

−u′′ = f(x), 0 < x < 1,

u(0) = 1, u′(1) + 2u(1) = 3.

Suppose that in this case the element has two nodes with two degrees of freedom
at each node, viz. u and u′; see Fig. 4.6.

In the usual way, u is interpolated throughout the element, in terms of its
nodal values, by

ũe = [Ne
1 Ne

2 Ne
3 Ne

4 ] [U1 U ′
1 U2 U ′

2]
T

.

The Hermite interpolation polynomials are given by (see Fig. 4.7)

H1(ξ) = 1
4 (2 − 3ξ + ξ3), H2(ξ) = 1

4 (1 − ξ − ξ2 + ξ3),(4.6)

H3(ξ) = 1
4 (2 + 3ξ − ξ3), H4(ξ) = 1

4 (−1 − ξ + ξ2 + ξ3).(4.7)

1 2U1,U1 U2,U2

xm

h

h
2x = (x–xm)

¢ ¢

Fig. 4.6 Element with two degrees of freedom at each node for the solution of the problem
of Example 4.2.
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Fig. 4.7 Hermite interpolation polynomials

The shape functions are given by

Ne
1 (ξ) = H1(ξ), Ne

2 (ξ) =
h

2
H2(ξ),(4.8)

Ne
3 (ξ) = H3(ξ), Ne

4 (ξ) =
h

2
H4(ξ).(4.9)

Notice the factor h/2 in Ne
2 and Ne

4 ; this is due to the fact that these shape
functions must give a unit value to du/dx at the nodes and the corresponding
Hermite interpolation polynomials give unit values to dHi/dξ.

It is not difficult to show that these functions have the necessary properties
associated with the shape functions; see Exercise 4.8. In the usual way, the
element stiffness matrix is given by

ke =
∫ 1

−1

αT α
h

2
dξ,

where

(4.10) α=
1
4h

[
2(−3 + 3ξ2) h(−1 − 2ξ + 3ξ2) 2(3 − 3ξ2) h(−1 + 2ξ + 3ξ2)

]
.

Thus

ke =
1

480h

⎡
⎢⎢⎣

576 48h −576 48h

64h2 −48h −16h2

576 −48h2

sym 64h2

⎤
⎥⎥⎦.
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The element force vector is given by

fe =
∫ 1

−1

fNeT h

2
dξ.

In the case f(x) = x,

fe =
h

120
[12(5xm − h) h(10xm − h) 12(5xm + h) − h(10xm + h)]T .

There are also contributions to the overall stiffness and force matrices due
to the non-homogeneous Robin boundary condition at x = 1; these contributions
are

k̄e = 2NeT

Ne
∣∣∣
x=1

=

⎡
⎢⎢⎣

0 0 0 0
0 0 0

2 0
sym 2

⎤
⎥⎥⎦

and

f̄e = 3NeT
∣∣∣
x=1

= [0 0 3 0]T .

Thus in this case, where f(x) = x, a one-element solution yields the overall
matrices as

K =
1

480

⎡
⎢⎢⎣

576 48 −576 48
64 −48 −16

1536 −48
sym 64

⎤
⎥⎥⎦,

F = 1
60 [9 2 21 − 3].

Thus the overall system of equations is, enforcing the essential boundary
condition U1 = 1,

64U ′
1 −48U2 −16U ′

2 = 16 − 48,

−48U ′
1 +1536U2 −48U ′

2 = 1608 + 576,

−16U ′
1 −48U2 +64U ′

2 = −24 − 48.

Solving yields U ′
1 = 11

8 , U2 = 13
8 , U ′

2 = 1
9 , which agrees with the exact solution

u0(x) = 1
6x(1 − x2).
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In a similar manner, rectangular elements may be derived in which the
nodal variables are u, ∂u/∂x, ∂u/∂y and the shape functions are products
of Hermite polynomials; compare the Lagrange family of elements in Section
4.2. Unlike the linear element, this representation does not give continuity of
nodal variables across interelement boundaries; see Exercise 5.1. In order that a
compatible rectangular element is obtained, it is necessary to have ∂2u/∂x∂y as
a nodal variable in addition to u, ∂u/∂x and ∂u/∂y (Irons and Draper 1965).
The rectangular element is, as has already been mentioned in Section 3.8, of
limited use because of its special shape; triangles are frequently preferred.

If derivatives at nodes are allowed to be nodal variables, a whole variety
of elements is available, and these are described in detail by Zienkiewicz et al.
(2005). Only one is described here, since it is one of the few two-dimensional
elements whch has complete continuity of the first derivatives across interelement
boundaries.

Consider the triangle with six nodes shown in Fig. 4.5(a). The element has
21 degrees of freedom throughout the element. The nodal variables at the corner
nodes are u, ∂u/∂x, ∂u/∂y, ∂2u/∂x2, ∂2u/∂y2 and ∂2u/∂x∂y. At the mid-side
nodes there is just one degree of freedom ∂u/∂n, the normal derivative.

Suppose that s is the distance along the side 3,1. Along this side, u may
be taken as a function of the single variable s; also, du/ds and d2u/ds2 may be
expressed in terms of the first and second partial derivatives of u. Thus, at nodes 3
and 1, there are six quantities U3, U ′

3, U ′′
3 , U1, U ′

1, U ′′
1 which uniquely determine

a quintic variation of u along this side. Also, ∂u/∂n may be determined by the
five quantities Un3, Un6, Un1, Unn3, Unn1, giving a unique quartic variation of
un(≡ ∂u/∂n) along this side. It follows, then, that u and ∂u/∂n are continuous
across interelement boundaries. For this element, it is more convenient to use
Cartesian coordinates and to set up the stiffness matrix using the generalized
coordinate formulation of Section 3.4. In practice, the matrix C obtained is
inverted numerically (Zienkiewicz et al. 2005).

This 21 degree-of-freedom element is sometimes reduced to an 18 degree-of-
freedom element by removing the mid-side nodes, thus allowing a cubic variation
of ∂u/∂n along this side; this of course still maintains compatibility of u and its
derivatives.

The elements presented in this section are a very small sample of those
available, and the interested reader is recommended to follow up the references.
These elements were first developed for solving plate-bending problems, in
which the governing differential equation is fourth-order and trial functions must
have continuity of the first derivative. For problems governed by second-order
equations, it is permissible for the trial functions to have discontinuities in the
first derivatives. In these cases the user has a choice: either use function values
only as nodal variables, develop simple elements and then find the field variables
using the stress matrix, or use function values and derivatives as nodal variables,
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develop relatively sophisticated elements and then find the field variables
directly.

4.5 Condensation of internal nodal freedoms

For elements with internal nodes, there is a procedure which may be adopted at
the element stage, i.e. before assembly, which has the effect of removing from the
overall system of equations the freedoms at those nodes. This is possible because
there is no coupling between these freedoms and freedoms in other elements. It is
desirable to do this, since savings in computational cost come from the resulting
reduction in overall equation size.

For the sake of generality, we have deliberately avoided reference to the
structural origins of the finite element method. However, an analogy is very
helpful here. The system of equations

(4.11) KU = F

represents the equilibrium of the structural system; we have already explained
the terms ‘stiffness matrix’ and ‘force vector’. The vector U, in structural terms,
describes the system displacements. In terms of the element matrices, eqn (4.11)
can be considered to be an amalgam, via the Boolean selection matrices of Section
3.6, of the element equilibrium equations

keUe = fe.

We shall use this relationship as follows.
Suppose that the element equilibrium equation may be partitioned in the

form [
k11 k12

k21 k22

] [
U1

U2

]
=

[
f1
f2

]
,

where U2 is the vector of nodal variables at the internal nodes and f2 is the
corresponding nodal force vector. Thus

(4.12) k11U1 + k12U2 = f1

and

k21U1 + k22U2 = f2.

Hence

(4.13) U2 = k−1
22 f2 − k−1

22 k21U1.

Equation (4.12) then gives

k̂U1 = f̂ ,
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where

k̂ = k11 − k12k
−1
22 k21

and

f̂ = f1 − k12k
−1
22 f2.

The overall matrices are then assembled in the usual manner.

Example 4.3 Consider again the three-node element of Example 4.1; then

ke =
1
3h

1⎡
⎢⎢⎣

7

sym

3

1
7

∣∣∣∣∣∣∣∣∣∣∣

2

−8
−8

16

⎤
⎥⎥⎦

1

3

2

and

fe =
h

6

1[
1

3

1

∣∣∣∣∣
2

4 ]T .

Thus

k̂ =
1
3h

[
7 1
1 7

]
−

[
− 8h

3

− 8h
3

] [
3h
16

] [− 8h
3 − 8h

3

]

=
1
h

[
1 −1

−1 1

]

and

f̂ =
h

6

[
1
1

]
−

[
8h
3

8h
3

] [
3h
16

] [
4h
6

]

=
h

2
[1 1]T .

The contributions to the stiffness and force matrices due to the non-
homogeneous boundary condition are given in Example 4.2. It thus follows that
the overall stiffness and force matrices for the two-element idealization are

K =

1⎡
⎣ 2

sym

3

−2
4

5

0
−2

4

⎤
⎦ 1

3

5

, F =

⎡
⎢⎣

1
4

1
2

13
4

⎤
⎥⎦

1

3

5

.
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Enforcing the essential boundary condition U1 = 1 and solving the equations
yields U3 = 11

8 and U5 = 3
2 , as given in Example 4.1.

We now find the remaining nodal values from eqn (4.13) on an element-by-
element basis:

[U2] =
[
3h
16

] [
4h
6

]− [
3h
16

] [− 8
3h − 8

3h

]
[U1 U3]

T
,

so that U2 = 39/32. Similarly, U4 = 47/32 as given in Example 4.1.

4.6 Curved boundaries and higher-order elements:
isoparametric elements

One advantage of higher-order elements is that the better polynomial approxima-
tion allows larger elements to be used. Unfortunately, this also means that curved
boundaries are not approximated so well; see Fig. 4.8. This can be overcome
by placing nodes 2 and 3 on the boundary and fitting a curve through the
nodes. This distorts the element and approximates the boundary by a curve, see
Fig. 4.9.

The distortion of the element is accomplished by working with a set of local
curvilinear coordinates (ξ, η). The global coordinates are expressed in terms of
these cordinates by

x = x(ξ, η), y = y(ξ, η).

The terms in the integrals for the element stiffness matrices contain x and y

derivatives. These derivatives may be expressed in terms of ξ and η derivatives by

1 2
3 4

Fig. 4.8 Boundary approximation by the side of a high-order element, compared with
that by the sides of three linear elements.

1

2
3

4

Fig. 4.9 Boundary approximation by a curve, cubic in this case, obtained by placing
nodes 2 and 3 on the boundary and thus distorting the side of the element.
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[
∂/∂ξ

∂/∂η

]
= J

[
∂/∂x

∂/∂y

]
,

where J is the Jacobian matrix, given by

(4.14) J =
[

∂x/∂ξ ∂y/∂ξ

∂x/∂η ∂y/∂η

]
.

Thus, provided that J is non-singular, it follows that
[

∂/∂x

∂/∂y

]
= J−1

[
∂/∂ξ

∂/∂η

]
.

In the isoparametric approach, the shape functions which interpolate the
nodal variables are also used to transform the coordinates. Thus, if the function
u is interpolated in element [e] by

ũe = N1U1 + N2U2 + . . . + NmUm,

then the coordinate transformation is given by

(4.15) x = N1x1 + N2x2 + . . . + Nmxm

and

(4.16) y = N1y1 + N2y2 + . . . + Nmym.

Notice that the isoparametric transformation (4.15), (4.16) will always yield the
constant-derivative condition (see Exercise 3.2), provided that

∑
Ni = 1.

The principle of the isoparametric concept is to map a ‘parent’ element in
the ξη plane to a curvilinear element in the xy plane, the sides of which pass
through the chosen nodes; see, for example, Figs. 4.10 and 4.11. It is important
that no gaps should occur between adjacent distorted elements. This will be
the case if the two adjacent elements are generated from parent elements in
which the shape functions satisfy the condition necessary for the continuity of u

(Zienkiewicz et al. 2005).
The terms in the element matrices are treated as follows. Using eqns (4.15)

and (4.16),

J = βX,

where

β =
[
∂Ne

∂ξ

∂Ne

∂η

]T
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Fig. 4.10 The linear isoparametric quadrilateral: (a) parent element; (b) distorted
element.
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Fig. 4.11 The quadratic isoparametric triangle: (a) parent element; (b) distorted
element.

and

X =

⎡
⎢⎢⎢⎣

x1 y1

x2 y2

...
...

xm ym

⎤
⎥⎥⎥⎦.

Since

α =
[
∂Ne

∂x

∂Ne

∂y

]T

,

it follows that

α = J−1β.
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The region of integration in the xy plane comes from a region in the ξη

plane, and the element of area transforms as

dx dy = |detJ| dξ dη.

Also, the presence of a Robin boundary condition requires the evaluation of
curvilinear integrals. These are obtained by noting that

ds2 = (dx2 + dy2),

i.e.

(4.17) ds = ±{
(J11 dξ + J21 dη)2 + (J12 dξ + J22 dη)2

}1/2
.

Since the boundary curve has an equation in local coordinates of the form
η = η(ξ) (or ξ = ξ(η)), the contour integrals are easily transformed to local
coordinates. In eqn (4.17), it should be noted that a positive or negative sign
must be associated with ds according as ξ (or η) is increasing or decreasing.

Thus, in the evaluation of the element matrices, it is necessary to obtain
integrals of the form

∫ η2

η1

∫ ξ2

ξ1

f(ξ, η) dξ dη and
∫ ξ2

ξ1

g(ξ) dξ.

These integrals are not at all convenient for analytical evaluation, and Gauss
quadrature is used to obtain the results numerically.

Example 4.4 The linear isoparametric quadrilateral for the solution of the gen-
eralized Poisson equation. One of the disadvantages of the rectangular element
described in Section 3.7 is the fact that rectangles rarely provide good approx-
imations to the geometry under consideration. However, quadrilaterals can be
used to provide a piecewise straight-line approximation which is arbitrarily close
to a given curve.

The parent and distorted elements are shown in Fig. 4.10. The shape
function matrix is given by eqn (3.53); thus the matrices necessary for the
evaluation of ke are

β =
1
4

[−(1 − η) (1 − η) (1 + η) −(1 + η)
−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ)

]
,

X =

⎡
⎢⎢⎣

x1 y1

x2 y2

x3 y3

x4 y4

⎤
⎥⎥⎦
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and

J = βX.

It then follows from the result of Exercise 3.7 that

(4.18) ke =
∫ 1

−1

∫ 1

−1

βT J−T κJ−1β |detJ| dξ dη.

The element force vector is

(4.19) fe =
∫ 1

−1

∫ 1

−1

fNeT |detJ| dξ dη.

A simple problem which is amenable to hand calculation is given in Exercise 4.10.

Example 4.5 The quadratic isoparametric triangle. The parent and distorted
elements are shown in Fig. 4.11, the local coordinates being the area coordinates
(L1, L2, L3). The shape functions are given by eqn (4.4) and (4.5); thus the
matrices necessary for the evaluation of ke are

β =
[

4(L2 + L3) − 3 4L2 − 1 0 4(1 − 2L2 − L3) 4L3 −4L3

4(L2 + L3) − 3 0 4L3 − 1 −4L2 4L2 4(1 − L2 − 2L3)

]
,

X =

⎡
⎢⎣

x1 y1

...
...

x6 y6

⎤
⎥⎦

and

J = βX.

The element stiffness matrix is then given by

(4.20) ke =
∫ 1

0

∫ 1−L3

0

βT J−T κJ−1β |detJ| dL2 dL3.

The isoparametric concept may also be used to distort three-dimensional
elements; see Fig. 4.12.

It is for three-dimensional problems that the concept is at its most useful,
since relatively few isoparametric elements can be used to obtain an accept-
able boundary approximation. The isoparametric transformation approximates
curved boundaries with curved arcs; for example, the quadratic transformation
approximates boundaries with parabolic arcs. While this is a big improvement
on piecewise linear approximation, there is still in general a difference between
the original and the approximating geometry. If essential Dirichlet boundary
conditions are enforced only at the nodes, then there will be an error introduced,
since these conditions will not hold everywhere on the approximate boundary.
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(a) (b)

Fig. 4.12 Some three-dimensional isoparametric elements: (a) tetrahedron; (b) rectan-
gular brick.

This difficulty may be overcome by using blending functions which interpolate
the boundary conditions exactly along the boundary in the ξη plane (Gordon
and Hall 1973). To illustrate the procedure, consider the following example.

Example 4.6 Suppose that u is given on the boundary of the four-node rectangle
shown in Fig. 3.19. Let L1(t) = 1

2 (1 − t) and L2(t) = 1
2 (1 + t) be the usual

Lagrange interpolation polynomials; then

ūe(x, y) = L1(η)u(ξ,−1) + L2(η)u(ξ, 1) + L1(ξ)u(−1, η) + L2(ξ)u(1, η)

− L1(ξ)L1(η)U1 − L2(ξ)L1(η)U2 − L2(ξ)L2(η)U3 − L1(ξ)L2(η)U4(4.21)

interpolates u throughout the rectangle and gives the exact value of u on its
boundaries.

A boundary element will usually have only one or two sides as boundary
sides, and in these cases not all the terms in eqn (4.21) are retained. The
technique is incorporated into the finite element procedure by replacing eqn
(3.5) by (Wait and Mitchell 1985)

ũe(x, y) =
∑

e

{ue(x, y) + ūe(x, y)} ,

where ūe(x, y) is non-zero in element [e] only if that element is a boundary
element where a Dirichlet boundary condition is specified. With this approxi-
mating function ũ, the finite element procedure of Section 3.6 follows through in
an identical fashion. The forms of the element matrices for elements other than
those adjacent to a boundary with a Dirichlet condition are exactly the same as
given by eqns (3.45)–(3.48). For a Dirichlet boundary element, eqn (4.21) may
be written in the form
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ũe = v(ξ, η;x, y) − ω1U1 − ω2U2 − ω3U3 − ω4U4.

It follows, then, that in the expression for the element matrices, the shape
functions are replaced by N1 − ω1, etc. There are also contributions to fe and f̄e

given by

fi =
∫ ∫

[e]

(
fNe

i − ∂v

∂x

∂Ne
i

∂x
− ∂v

∂y

∂Ne
i

∂y

)
dx dy

and

f̄i =
∫

Ce
2

(hNe
i − σNe

i v) ds.

Example 4.7 Solve Laplace’s equation ∇2u = 0 in the square with vertices
at (0, 0), (1, 0), (1, 1), (0, 1), subject to the boundary conditions u(0, y) =
y, u(x, 0) = x, ∂u/∂n = y on x = 1, ∂u/∂n = x on y = 1.

Using one bilinear blended element, eqn (4.21) is modified to give

ũe = 1
2 (1 − η)u(ξ,−1) + 1

2 (1 − ξ)u(−1, η) − 1
4 (1 − ξ)(1 − η)U1.

In this case ω1 = N1, ω2 = ω3 = ω4 = 0, so that the shape function associated
with node 1 is identically zero and the overall system is immediately reduced to
a 3 × 3 set. The element stiffness matrix is obtained from Example 3.4 as

k =
1
6

2⎡
⎣ 4

−1
−2

3

−1
4

−1

4

−2
−1

4

⎤
⎦ 2

3

4

,

v = 1
2 (1 − η)x + 1

2 (1 − ξ)y;

thus

∂v

∂x
= 1

2 (1 − η) − y = −η

and

∂v

∂y
= −x + 1

2 (1 − ξ) = −ξ.

Thus

f =
∫ 1

−1

∫ 1

−1

2
4

⎡
⎢⎣

(1 − η)η − ξ(1 + ξ)
(1 + η)η + ξ(1 + ξ)

−(1 + η)η + ξ(1 − ξ)

⎤
⎥⎦ 1

4
dξ dη

= 1
3

2[ −1
3

1
4

1 ]T
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using eqn (3.53) for the shape functions, and

f̄ =
∫ 1

−1

1
2 (1 + η) 1

4

⎡
⎣2(1 − η)

2(1 + η)
0

⎤
⎦ 1

2 dη +
∫ 1

−1

1
2 (1 + ξ) 1

4

⎡
⎣ 0

2(1 + ξ)
2(1 − ξ)

⎤
⎦(− 1

2 dξ
)

= 1
6

2[
1

3

4
4

1 ]T .

Thus, assembling the equation for the only unknown, U3,

− 1
6U2 + 2

3U3 − 1
6U4 = 1

3 + 2
3 .

Now, U2 = U4 = 1 so that U3 = 2. Blending functions may be used with trian-
gular elements (Barnhill et al. 1973) and may also be used to develop elements
which satisfy natural boundary conditions exactly (Hall and Heinrich 1978).

4.7 Exercises and solutions

Exercise 4.1 Obtain the matrix αe for a cubic element to be used in the solution
of −u′′ = f(x).

Exercise 4.2 For the quadratic rectangular element of the Lagrange family
(Fig. 4.3(a)), obtain the shape functions. If the central node is removed, show
that the remaining shape functions are not a suitable set.

Exercise 4.3 Obtain the stiffness matrix for the quadratic rectangular element
shown in Fig. 4.4(a).

Exercise 4.4 Obtain the shape function for the rectangular brick element shown
in Fig. 4.13.

Exercise 4.5 Obtain the shape functions for the quartic triangular element
shown in Fig. 4.5(c).

7

15

12

1
9 2

13

4

18

19

20
143

17
6

10
1116

8

5x

z

h

Fig. 4.13 Twenty-node rectangular brick element.
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3
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5 21

Fig. 4.14 Ten-node tetrahedral element.

Exercise 4.6 Obtain the stiffness matrix for the quadratic triangular element
shown in Fig. 4.5(a).

Exercise 4.7 Obtain the shape functions for the tetrahedral element shown in
Fig. 4.14. Use the volume coordinates as defined in Exercise 3.23.

Exercise 4.8 Show that the shape functions given by eqn (4.8) and (4.9), defined
in terms of the Hermite interpolation polynomials, satisfy the usual necessary
conditions for the shape functions.

Exercise 4.9 The rectangular element with four corner nodes shown in Fig. 3.19
is to be used with three degrees of freedom at each node, these being u, ∂u/∂x

and ∂u/∂y. Show that in the resulting element, ∂2u/∂x∂y 
= ∂2u/∂y∂x at the
nodes, so that the element is not a fully compatible element.

Exercise 4.10 u satisfies Laplace’s equation in the square with vertices at A (0,
0), B (1, −1), C (2, 0), D (1, 1) as shown in Fig. 4.15. On sides BC and CD,
u = 2x − 3; on sides AB and AD, ∂u/∂n =

√
2(1 − 2x). Using the isoparametric

approach with one element, obtain the stiffness and force matrices and hence
find u(x, y).

Exercise 4.11 The generalized Poisson equation −div(κ gradu) = f is to be
solved using quadratic isoparametric triangles with numerical integration. u

satisfies the Dirichlet boundary condition u = g(s) on some part, C1, of the
boundary, and the Robin boundary condition (κ gradu) · n + σu = h(s) on the
remainder, C2. Obtain expressions for the element matrices necessary for
the solution of the problem.

Exercise 4.12 Obtain the matrices necessary for the computation of the element
matrices for the isoparametric quadratic rectangle.

Solution 4.1 Using the usual local coordinate ξ = 2(x − xm)/h, the shape func-
tion matrix is
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1

(0,0)

4

B

A

E

2

5

8

D

3
(1,1)

C

h

x

6

(2,0)

9

(1,–1)7

x

y

Fig. 4.15 Square region for the problem of Exercise 4.11. (ξ, η) are the usual local
coordinates.

Ne =
1
16

⎡
⎢⎢⎢⎢⎣

9(ξ2 − 1)(1 − ξ)

9(1 − 3ξ)(1 − ξ2)

9(1 + 3ξ)(ξ2 − 1)

(9ξ2 − 1)(1 + ξ)

⎤
⎥⎥⎥⎥⎦

T

.

Thus

αe =
1
8h

⎡
⎢⎢⎢⎢⎣
−27ξ2 + 18ξ + 1

81ξ2 − 18ξ − 27

81ξ2 + 18ξ − 27

27ξ2 + 18ξ − 1

⎤
⎥⎥⎥⎥⎦

T

.

Solution 4.2 Taking (ξ, η) as local coordinates at the centre of the element, the
shape functions are

1
4 (ξ2 − ξ)(η2 − η), 1

2 (1 − ξ2)(η2 − η), 1
4 (ξ2 + ξ)(η2 − η),

1
2 (ξ2 + ξ)(1 − η2), 1

4 (ξ2 + ξ)(η2 + η), 1
2 (1 − ξ2)(η2 + η),

1
4 (ξ2 − ξ)(η2 + η), 1

2 (ξ2 − ξ)(1 − η2), 1
4 (1 − ξ2)(1 − η2).

If the node at the centroid is removed, then the remaining shape functions satisfy

∑
Ni = ξ2 + η2 − ξ2η2 
= 1.
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Thus they do not satisfy one of the conditions necessary to recover an arbitrary
linear form, see Exercise 3.2.

Solution 4.3 The shape functions are given by eqn (4.2) as

Ni = 1
4 (1 + ξξi)(1 + ηηi)(ξξi + ηηi − 1).

Thus the matrix αe is given by

α1j =
∂Nj

∂x
=

1
2a

(1 + ηηj)ξj(ηηj + 2ξξj),

α2j =
∂Nj

∂y
=

1
2b

(1 + ξξj)ηj(2ηηj + ξξj),

⎫⎪⎪⎬
⎪⎪⎭ j = 1, 3, 5, 7,

α1j = − ξ

2a
(1 + ηηj), α2j =

ηj

4b
(1 − ξ2), j = 2, 6,

α1j =
ξj

4a
(1 − η2), α2j = − η

2b
(1 + ξξj), j = 4, 8.

Now,

kij =
∫ 1

−1

∫ 1

−1

(α1iα1j + α2iα2j)
ab

4
dξ dη.

Thus, after some algebra, it follows that ke = 1
90×

1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

52(r+1/r)

sym

2

6r−80/r

48r+160/r

3

17r+28/r

6r−80/r

52(r+1/r)

4

−40r−6/r

0

−80r+6/r

160r+48/r

5

23(r+1/r)

−6r−40/r

28r+17/r

−80r+6/r

52(r+1/r)

6

−6r−40/r

−48r+80/r

−6r−40/r

0

6r−80/r

48r+160/r

7

28r+17/r

−6r−40/r

23(r+1/r)

−40r−6/r

17r+28/r

6r−80/r

52(r+1/r)

8

−80r+6/r

0

−40r−6/r

80r−48/r

−40r−6/r

0

−80r+6/r

160r+48/r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

7

8

.

Solution 4.4 Following the notation of Zienkiewicz et al. (2005), the shape
functions are as follows.

Corner nodes:

Ni = 1
8 (1 + ξξi)(1 + ηηi)(1 + ζζi)(ξξi + ηηi + ζζi − 2).

Mid-side nodes 9, 17, 19, 11(i.e. ηi = 0) :

Ni = 1
4 (1 − η2)(1 + ξξi)(1 + ζζi).

The shape functions for the other mid-side nodes follow in a similar manner.
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Solution 4.5 The shape functions are as follows.

Corner nodes:

Ni = 1
6Li(4Li − 1)(4Li − 2)(4Li − 3).

Side nodes:

N4 = 8
3L1L2(4L1 − 1)(4L1 − 2),

N5 = 4L1L2(4L1 − 1)(4L2 − 1),

N6 = 8
3L1L2(4L2 − 1)(4L2 − 2), etc.

Internal nodes:

N13 = 32L1L2L3(4L2 − 1), etc.

Solution 4.6 The shape functions are given by eqns (4.4) and (4.5); the local
coordinates (L1, L2, L3) are related to the global coordinates (x, y) by eqn (3.62).
Using these results, the matrix α may be written as

α =
1

2A
ωB,

where

ω =
[

L1 L2 L3 0 0 0
0 0 0 L1 L2 L3

]

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3b1 −b2 −b3 4b2 0 4b3

−b1 3b2 −b3 4b1 4b3 0
−b1 −b2 3b3 0 4b2 4b1

3c1 −c2 −c3 4c2 0 4c3

−c1 3c2 −c3 4c1 4c3 0
−c1 −c2 −3c3 0 4c2 4c1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus

ke =
1

4A2
BT

(∫ ∫
A

ωT ω dx dy

)
B.

Now, ∫ ∫
A

ωT ω dx dy =
[
Λ 0

0 Λ

]

= D, say,
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where

Λ =
A

12

⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦ ; see Exercise 3.11.

Therefore

ke =
1

4A2
BT DB.

Solution 4.7 The shape functions are as follows.

Corner nodes:

Ni = (2Li − 1)Li, i = 1, . . . , 4.

Mid-side nodes:

Ni = 4LkLj , i = 5, . . . , 10,

where node i lies on the edge joining corner nodes k and j.

Solution 4.8 (i) Suppose that the nodal points are x = x1; see Fig. 4.6. Using
eqn (3.10), the shape functions must satisfy the following.

At node 1:

N1 =
dN2

dx
= 1,

dN1

dx
= N2 = N3 =

dN3

dx
= N4 =

dN4

dx
= 0.

At node 2:

N1 =
dN1

dx
= N2 =

dN2

dx
=

dN3

dx
= N4 = 0, N3 =

dN4

dx
= 1.

These results are easily verified using eqn (4.6)–(4.9), remembering that

dNi

dx
=

2
h

dNi

dξ
.

(ii) The shape functions must be able to recover an arbitrary linear form.
Thus solutions ue ≡ 1 and ue ≡ x must be realizable. It follows then that the
shape functions must satisfy N1 + N2 = 1 and N1x1 + N2 + N3x2 + N4 = x. The
first of these is easily verified; the second can be verified as follows:

N1x1 + N2 + N3x2 + N4 =
1
2
(x1 + x2) +

3ξ

4
(x2 − x1) +

ξ3

4
(x1 − x2) − hξ

4
+

hξ3

4

= xm +
hξ

2
= x.
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Solution 4.9 (Irons and Draper 1965). The element has 12 degrees of freedom
to specify u, four to specify ∂u/∂x and four to specify ∂u/∂y. Thus

u = a0 + a1x + a2y + . . . ,

∂u

∂x
= b0 + b1x + b2y + b3xy,

∂u

∂y
= c0 + c1x + c2y + c3xy.

Along side 3,4, on which y is constant,

u = α1 + α2x + α3x
2 + α4x

3,

and there are exactly four nodal parameters, u and ∂u/∂x at each node, to
define uniquely the value of u along this side. It thus follows that u is continuous
across this boundary. Similarly, it may be shown that u is continuous across the
other three boundaries. Now, along side 3,4, ∂u/∂y will be interpolated linearly
between its nodal values, so that on this side

∂u

∂y
= 1

2 (1 − ξ)(uy)4 + 1
2 (1 + ξ)(uy)3.

Thus

∂2u

∂x∂y
=

1
a
{(uy)3 − (uy)4} .

Similarly, along side 2,3,

∂u

∂x
= 1

2 (1 − η)(ux)2 + 1
2 (1 + η)(ux)3.

Thus

∂2u

∂y∂x
=

1
b
{(ux)3 − (ux)2} .

In general, then, it follows that at node 3,

∂2u

∂x∂y

= ∂2u

∂y∂x
,

and so the necessary conditions for a continuous first derivative are not satisfied,
i.e. the element is not fully compatible.

Solution 4.10 For Laplace’s equation,

κ =
[

1 0
0 1

]
.
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The shape function matrix is

Ne = 1
4 [(1 − ξ)(1 − η) (1 + ξ)(1 − η) (1 + ξ)(1 + η) (1 − ξ)(1 + η)].

The isoparametric transformation gives

x = Ne [0 1 2 1]T , y = Ne [0 − 1 0 1]T .

Using Example 4.4,

β =
1
4

[−(1 − η) (1 − η) (1 + η) −(1 + η)
−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ)

]
,

X =

⎡
⎢⎢⎣

0 0
1 −1
2 0
1 1

⎤
⎥⎥⎦.

Thus

J =

[
1
2 − 1

2

1
2

1
2

]
, |detJ| = 1

2

and

J−1 =
[

1 1
−1 1

]
.

Therefore

J−T κJ−1 =
[

2 0
0 2

]
.

Thus, using eqn (4.18),

ke =
∫ 1

−1

∫ 1

−1

βT

[
2 0
0 2

]
β 1

2 dξ dη

=
1
6

⎡
⎢⎢⎣

4 −1 −2 −1
4 −1 −2

4 −1
sym 4

⎤
⎥⎥⎦.
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The force vector has contributions from the non-homogeneous Neumann bound-
ary condition.

On sideDA, 1 − 2x = −η and ds = − 1√
2
dη.

On sideAB , 1 − 2x = −ξ and ds =
1√
2
dξ.

Thus

f =
∫ 1

−1

1
4 [2(1 − η) 0 0 2(1 + η)]T η dη

−
∫ 1

−1

1
4 [2(1 − ξ) 2(1 + ξ) 0 0]T ξ dξ

= 1
3 [2 − 1 0 1]T .

Thus assembling the equation for the one unknown uA, enforcing the essential
boundary conditions uB = −1, uC = 1, uD = −1 and solving yields uA = 1.

Interpolating through the element gives

ũe(x, y) = N [1 − 1 1 − 1]T

= ξη

= x2 − y2 − 2x + 1.

This is the exact solution, which has been recovered since it is a linear combi-
nation of 1, ξ, η and ξη. In general, an arbitrary quadratic function cannot be
expressed as a linear combination of 1, ξ, η and ξη.

Solution 4.11 Using eqn (4.20),

ke =
∫ 1

0

∫ 1−L3

0

βT J−T κJ−1β |detJ| dL2 dL3.

Thus, using a Gauss quadrature formula for the integral,

ke ≈
p1∑

g=1

wgβ
T
g J−T

g κgJ
−1
g βg |detJg| ,

where the subscript g means we evaluate at Gauss point g and a quadrature of
order p1 is chosen; wg is the corresponding weight; see Appendix D.
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The force vector is given by

fe =
∫ 1

0

∫ 1−L3

0

fNeT |detJ| dL2 dL3

≈
p1∑

g=1

wgfgN
eT
g |detJg| .

For a boundary element which coincides with a part of C2, there are contributions
to the stiffness and force given by eqns (3.46) and (3.48) as

k̄e =
∫

Ce
2

σNeT Ne ds,

f̄e =
∫

Ce
2

hNeT ds,

where ds is given by eqn (4.17). Thus, using a one-dimensional Gauss quadrature
formula of order p2,

k̄e ≈
p2∑

g=1

wgσgN
eT
g Ne

g dsg,

f̄e ≈
p2∑

g=1

wghgN
eT
g dsg,

where wg is the weight associated with Gauss point g.

Solution 4.12 The shape functions are given by eqn (4.2) as

β =
[

∂Ne/∂ξ

∂Ne/∂η

]
,

and these partial derivatives have already been obtained in Exercise 4.3, remem-
bering that in the ξη plane, a = b = 2:

β1j =
1
4
(1 + ηηi)ξi(ηηi + 2ξξi),

β2i =
1
4
(1 + ξξi)ηi(2ηηi + ξξi),

⎫⎪⎪⎬
⎪⎪⎭ j = 1, 3, 5, 7,
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β1j = −ξ

4
(1 + ηηj), β2j =

ηj

8
(1 − ξ2), j = 2, 6,

β1j =
ξj

8
(1 − η2), β2j = −η

4
(1 + ξξj), j = 4, 8,

X =

⎡
⎢⎢⎢⎣

x1 y1

x2 y2

...
...

x8 y8

⎤
⎥⎥⎥⎦.

The Jacobian may now be evaluated using J = βX. Using these matrices,
eqns (4.18) and (4.19) give the element matrices.



5 Further topics in the finite
element method

So far, elliptic problems only have been considered, and we shall see in Section 5.1
how, with reference to Poisson problems, the variational approach is equivalent
to Galerkin’s method. Of course, for many problems of practical interest, such
variational principles may not exist, or where they do, a suitable functional may
not be known. In this chapter we shall consider procedures for a wide variety
of problems, including parabolic, hyperbolic and non-linear problems. It is not
intended to be any more than an introduction, and the ideas are presented by
way of particular problems. The reader with a specific interest in any one subject
area will find the references useful for further detail.

5.1 The variational approach

We seek a finite element solution of the problem given by eqns (3.30)–(3.32), viz.

(5.1) −div(k gradu) = f(x, y) in D,

with the Dirichlet boundary condition

(5.2) u = g(s) on C1

and the Robin boundary condition

(5.3) k(s)
∂u

∂n
+ σ(s)u = h(s) on C2.

The functional for this problem is found from eqn (2.44) as

I[u] =
∫ ∫

D

{
k

(
∂u

∂x

)2

+ k

(
∂u

∂y

)2

− 2uf

}
dx dy +

∫
C2

(σu2 − 2uh) ds

and the solution, u, of eqns (5.1)–(5.3) is that function, u0, which minimizes I[u]
subject to the essential boundary condition u0 = g(s) on C1.

We follow exactly the finite element philosophy of Section 3.4, writing

(5.4) ũ(x, y) =
∑

e

ũe(x, y)
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with

(5.5) ũe(x, y) = Ne(x, y)Ue.

Then

I[ũ] =
∫ ∫

D

⎧⎨
⎩k

(
∂

∂x

∑
e

ũe

)2

+ k

(
∂

∂y

∑
e

ũe

)2

− 2
∑

e

ũef

⎫⎬
⎭ dx dy

+
∫

C2

⎧⎨
⎩σ

(∑
e

ũe

)2

− 2
∑

e

ũeh

⎫⎬
⎭ ds.

Now, since ũe is zero outside element [e], the only non-zero contribution to I[ũ]
from ũe comes from integration over the element itself. Thus

I[ũ] =
∑

e

∫ ∫
[e]

{
k

(
∂ũe

∂x

)2

+ k

(
∂ũe

∂y

)2

− 2ũef

}
dx dy

+
∑

e

∫
C2

{
σ (ũe)2 − 2ũeh

}
ds

=
∑

e

Ie, say.

The second term applies only if the element has a boundary coincident with C2;
see Fig. 3.15.

Using eqns (5.4) and (5.5),

I[ũ] = I(U1, U2, . . . , Un).

Then, using the Rayleigh–Ritz procedure to minimize I with respect to the
variational parameters Ui gives

∂I

∂Ui
= 0, i = 1, . . . , n,

i.e.

(5.6)
∑

e

∂Ie

∂Ui
= 0, i = 1, . . . , n.

Before developing the element matrices, it is helpful to express the equations
(5.6) as a single matrix equation.

Define

∂Ie

∂U
=

[
∂Ie

∂U1

∂Ie

∂U2
. . .

∂Ie

∂Un

]T

.
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Suppose that element [e] has nodes p, q, . . . , i, . . . , s; see Fig. 3.16. Then

∂Ie

∂U
= [

1
0

2
0 . . .

p

∂Ie

∂Up
0 . . . 0

q

∂Ie

∂Uq
0 . . . 0

i

∂Ie

∂Ui
0 . . .

. . . 0

s

∂Ie

∂Us
0 . . . 0

n
0 ]T ,(5.7)

and the equations (5.6) become

∑
e

∂Ie

∂U
= 0.

Now,

∂Ie

∂Ui
=

∫ ∫
[e]

{
k

∂

∂Ui

(
∂ũe

∂x

)2

+ k
∂

∂Ui

(
∂ũe

∂y

)2

− 2
∂ũe

∂Ui
f

}
dx dy

+
∫

C2

{
σ

∂

∂Ui
(ũe)2 −−2

∂ũe

∂Ui
h

}
ds.(5.8)

If node i is not associated with element [e], then ∂Ie/∂Ui = 0; a non-zero
contribution to ∂Ie/∂Ui will occur only if node i is associated with element [e].
This is shown in eqn (5.7). For element [e], as shown in Fig. 3.16,

ũe(x, y) = Ne
pUp + Ne

q Uq + . . . + Ne
i Ui + . . . + Ne

s Us =
∑
j∈[e]

Ne
j Uj .

Then

∂

∂Ui

(
∂ũe

∂x

)2

= 2
∂ũe

∂x

∂

∂Ui

(
∂ũe

∂x

)

= 2
∂ũe

∂x

∂

∂x

(
∂ũe

∂Ui

)

= 2
∂

∂x
(NeUe)

∂Ne
i

∂x

= 2
[
∂Ne

i

∂x

∂Ne
p

∂x
. . .

∂Ne
i

∂x

∂Ne
s

∂x

]
[Up . . . Us]

T
.

Similarly,

∂

∂Ui

(
∂ũe

∂y

)2

= 2
[
∂Ne

i

∂y

∂Ne
p

∂y
. . .

∂Ne
i

∂y

∂Ne
s

∂y

]
[Up . . . Us]

T
.
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Now,

∂ũe

∂Ui
= Ne

i

and

∂

∂Ui
(ũe)2 = 2

[
Ne

i Ne
p . . . Ne

i Ne
s

]
[Up . . . Us]

T
.

Thus eqn (5.8) becomes

∂Ie

∂Ui
= 2

∫ ∫
[e]

k

[(
∂Ne

i

∂x

∂Ne
p

∂x
+

∂Ne
i

∂y

∂Ne
p

∂y

)

. . .

(
∂Ne

i

∂x

∂Ne
s

∂x
+

∂Ne
i

∂y

∂Ne
s

∂y

)]⎡
⎢⎣

Up

...
Us

⎤
⎥⎦ dx dy

− 2
∫ ∫

[e]

fNe
i dx dy + 2

∫
Ce

2

σ
[
Ne

i Ne
p . . . Ne

i Ne
s

] ⎡⎢⎣
Up

...
Us

⎤
⎥⎦ ds

− 2
∫

Ce
2

hNe
i ds,

i.e.

∂Ie

∂Ui
= 2

∑
j∈[e]

ke
ijUj + 2

∑
j∈[e]

k̄e
ijUj − 2fe

i − 2f̄e
i ,

where

ke
ij =

∫ ∫
[e]

k

(
∂Ne

i

∂x

∂Ne
j

∂x
+

∂Ne
i

∂y

∂Ne
j

∂y

)
dx dy,(5.9)

k̄e
ij =

∫
Ce

2

σNe
i Ne

j ds,(5.10)

fe
i =

∫ ∫
[e]

fNe
i dx dy,(5.11)

f̄e
i =

∫
Ce

2

hNe
i ds,(5.12)

which are exactly eqns (3.40)–(3.43), developed using Galerkin’s method in
Chapter 3, and these lead as before to the matrix form given by eqns (3.45)–
(3.48). The Galerkin approach of Chapter 3 is more general, since it is applicable
in cases where a variational principle does not exist. However, the variational
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procedure ensures that the resulting stiffness matrix, reduced by enforcing
the essential boundary condition, is positive definite and hence non-singular,
provided that the differential operator L is positive definite.

Example 5.1 Consider the differential operator L given by

Lu = −div(κ grad u) dx dy.

Then∫ ∫
D

uLu dx dy = −
∫ ∫

D

u div(κ grad u) dx dy

=
∫ ∫

D

grad u · (κ grad u) dx dy −
∮

C

u (κ grad u) · n ds

using the generalized first form of Green’s theorem (2.6). For homogeneous
Dirichlet boundary conditions, the boundary integral vanishes, and hence L is
positive definite provided that κ is positive definite. For a homogeneous Robin
boundary condition of the form

(κ grad u) · n + σu = 0,

it is also necessary that σ > 0 in order that L is positive definite (cf. Exam-
ple 2.2).

Suppose that v =
∑

j wjvj , where vj is arbitrary and wj is the nodal function
associated with a node at which a Dirichlet boundary condition is not specified.
Then∫ ∫

D

vLv dx dy =
∫ ∫

D

−v div (κ grad v) dx dy

=
∫ ∫

D

grad v · (κ grad v) dx dy −
∫

C

v (κ grad v) · n ds

= vT

⎛
⎜⎝∫ ∫

D

⎡
⎢⎣

∂w1/∂x ∂w1/∂y

∂w2/∂x ∂w2/∂y
...

...

⎤
⎥⎦κ

[
∂w1/∂x ∂w1/∂y . . .

∂w2/∂x ∂w2/∂y . . .

]
dx dy

⎞
⎟⎠v

+ vT

⎛
⎜⎝∫

C2

σ

⎡
⎢⎣

w1

w2

...

⎤
⎥⎦ [w1 w2 . . .] ds

⎞
⎟⎠v,

where C2 is that part of the boundary on which a homogeneous mixed boundary
condition holds. Thus it may be seen, by comparison with Example 3.3, that∫ ∫

D

vLv dx dy = vT Kv,
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where K is the reduced overall stiffness matrix. Now, provided that κ is positive
definite and σ > 0, L is positive definite; consequently, it follows that

vT Kv > 0,

i.e. K is positive definite.

When a variational principle exists, it is always equivalent to a weighted
residual procedure. However, the converse is not true, since weighted residual
methods are applied directly to the boundary-value problem under consideration,
irrespective of whether a variational principle exists or not.

To establish this result, consider the functional

I[u] =
∫ ∫

D

F

(
x, y, u,

∂u

∂x
,
∂u

∂y
, . . .

)
dx dy +

∮
C

G

(
x, y, u,

∂u

∂x
,
∂u

∂y
, . . .

)
ds,

(5.13)

which is stationary when u = u0.
Suppose that u = u0 + αv; then the stationary point occurs when

(dI/dα)|α=0 = 0; see Section 2.6. This yields an equation of the form

(5.14)
∫ ∫

D

vLE(u) dx dy +
∮

C

vBE(u) ds = 0,

which holds for arbitrary v; thus it follows that

(5.15) LE(u) = 0 in D

and

(5.16) BE(u) = 0 on C.

Equation (5.15) is the so-called Euler equation for the functional (5.13).
If eqns (5.15) and (5.16) are precisely the differential equation and boundary

conditions under consideration, then the variational principle is said to be a nat-
ural principle and it follows immediately that eqn (5.14) gives the corresponding
Galerkin method, the weighting function being the trial function v. However,
not all differential equations are Euler equations of an appropriate functional;
nevertheless, it is always possible to apply a weighted residual method.

Thus, if the Euler equations of the variational principle are identical with
the differential equations of the problem, then the Galerkin and Rayleigh–Ritz
methods yield the same system of equations. In particular, it follows from Section
2.3 that, since the variational principle associated with a linear self-adjoint
operator is a natural one, the Galerkin and Rayleigh–Ritz methods yield identical
results.
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It is worth concluding this section with a note on the terminology, since
the method described here is often associated with the name ‘Bubnov–Galerkin
method’. When piecewise weighting functions other than the nodal functions are
used, then the name ‘Petrov–Galerkin’ is associated with the procedure.

5.2 Collocation and least squares methods

Recall the weighted residual method (Section 2.3) for the solution of

(5.17) Lu = f in D

subject to the boundary condition

(5.18) Bu = b on C.

Define the residual

r1(ũ) = Lũ − f

and the boundary residual

r2(ũ) = Bũ − b;

then eqn (2.23) suggests the following general weighted residual equations:

(5.19)
∫ ∫

D

r1vi dx dy +
∮

C2

r2vi ds = 0, i = 1, . . . , n,

where {vi} is a set of linearly independent weighting functions which satisfy
vi ≡ 0 on C1, that part of C on which an essential boundary condition applies.
The trial functions ũ are defined in the usual piecewise sense by eqn (5.4) as

ũ =
∑

e

ũe,

with ũe interpolated through element [e] in terms of the nodal values. The
equations (5.19) then yield a set of algebraic equations for these nodal values.
Notice that no restriction is placed on the operator L; it may be non-linear, in
which case the resulting set of equations is a non-linear algebraic set; see Section
5.3. Very often, the equations (5.19) are transformed by the use of an integration-
by-parts formula, Green’s theorem, so that the highest-order derivative occurring
in the integrand is reduced, thus reducing the continuity requirement for the
chosen trial function.

The point collocation method requires that the boundary-value problem be
satisfied exactly at n points in the domain; this is accomplished by choosing
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vi(x, y) = δ(x − xi, y − yi), the usual Dirac delta function. In practice, the collo-
cation is usually performed at m points in the domain (m � n) and the resulting
overdetermined system is solved by the method of least squares; see Exercise 5.3.

In the subdomain collocation method, the region is divided into N subdo-
mains (elements) Dj , and the weighting function is given by

vj(x, y) =
{

1, (x, y) ∈ Dj ,

0, otherwise.

In the least squares method, the integral

I =
∫ ∫

D

r2
1 dx dy +

∫
C

r2
2 ds

is minimized with respect to the nodal variables Uj , which leads to the set of
equations

(5.20)
∂I

∂Ui
= 0, i = 1, . . . n.

In the case where the trial functions are chosen to satisfy the boundary condi-
tions, eqn (5.20) yields

(5.21)
∫ ∫

D

r1
∂r1

∂Ui
dx dy = 0, i = 1, . . . n,

so that the weighting functions are given by ∂r1/∂Ui.

Example 5.2 Consider Poisson’s equation,

(5.22) −∇2u = f.

The usual finite element approximation is written in the form

ũ =
∑

e

⎛
⎝∑

j∈[e]

Ne
j Uj

⎞
⎠,

which gives the residual

r(ũ) = −
∑

e

⎧⎨
⎩

∑
j∈[e]

(∇2Ne
j

)
Uj

⎫⎬
⎭− f.

Thus it follows from eqn (5.21) that

∑
e

∫ ∫
[e]

⎧⎨
⎩

∑
j∈e

(∇2Ne
j

)
Uj + f

⎫⎬
⎭∇2Ne

i dx dy = 0.
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Thus element stiffness and force matrices may be obtained, given by

ke
ij =

∫ ∫
[e]

(∇2Ne
j

)∇2Ne
i dx dy

and

fe
i = −

∫ ∫
[e]

f ∇2Ne
i dx dy.

Unfortunately, these integrals contain second derivatives, which means that
the trial functions must have continuous first derivatives. For this reason, the
least squares method has not been very attractive. However, if the governing
partial differential equation (5.22) is replaced by a set of first-order equations
(Lynn and Arya 1973, 1974), then the continuity requirement may be relaxed.
Let

(5.23) ξ =
∂U

∂x
, η =

∂U

∂y
;

then eqn (5.22) becomes

(5.24)
∂ξ

∂x
+

∂η

∂y
= −f,

and the system of equations (5.23) and (5.24) is used instead of the original
equation (5.22).

The least squares approach to minimizing the residual errors then leads
to three integral expressions. The usual finite element representation for the
unknowns U, ξ, η is then substituted into these expressions to obtain the neces-
sary stiffness and force matrices; see Exercise 5.4.

5.3 Use of Galerkin’s method for time-dependent and
non-linear problems

When the finite element method is applied to time-dependent problems, the time
variable is usually treated in one of two ways:

(1) Time is considered as an extra dimension, and shape functions in space and
time are used. This is illustrated in Example 5.3.

(2) The nodal variables are considered as functions of time, and the space
variables are used in the finite element analysis. This leads to a system of
ordinary differential equations, which may be solved by a finite difference
or weighted residual method. This approach is illustrated in Example 5.4.
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A Laplace transform approach is also possible, and this is considered in
Section 5.5.

Example 5.3 Consider the diffusion equation

∇2u =
1
α

∂u

∂t
in D

subject to the boundary conditions

u = g(s, t) on C1,

∂u

∂n
+ σ(s, t)u = h(s, t) on C2.

Suppose that the approximation in xyt space is given by

(5.25) ũ =
∑

e

ũe,

where

(5.26) ũe = Ne(x, y, t)Ue.

The Galerkin procedure involves choosing the nodal functions as weighting
functions and setting the integrals of the weighted residuals to zero, just as
in Chapters 2 and 3:∫ T

0

∫ ∫
D

(
−∇2ũ +

1
α

∂ũ

∂t

)
wi dx dy dt +

∫ T

0

∫
C2

(
∂ũ

∂n
+ σũ − h

)
wi ds dt = 0,

where the nodal functions are chosen such that wi ≡ 0 on C1. The term in the
first integral is written in this form to be consistent with the notation of Chapters
2 and 3, where, for Poisson’s equation, the differential operator was written as
−∇2.

The first integral may be transformed using Green’s theorem for the space
variables to give∫ T

0

∫ ∫
D

(
grad wi · grad ũ +

wi

α

∂ũ

∂t

)
dx dy dt +

∫ T

0

∫
C2

(σũ − h) wi ds dt.

Then, using eqns (5.25) and (5.26), the following system of equations may be
obtained just as before:

(5.27) KU = F,

where the element stiffness and forces are given by

(5.28) ke
ij =

∫ T

0

∫ ∫
[e]

(
∂Ne

i

∂x

∂Ne
j

∂x
+

∂Ne
i

∂y

∂Ne
j

∂y
+

1
α

Ne
i

∂Ne
j

∂x

)
dx dy dt,
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(5.29) k̄e
ij =

∫ T

0

∫
Ce

2

σNe
i Ne

j ds dt

and

(5.30) f̄e
i =

∫ T

0

∫
Ce

2

hNe
i ds dt.

Notice that the stiffness matrix is no longer symmetric; this is due to the fact
that the parabolic operator −∇2 + (1/α)(∂/∂t) is not self-adjoint.

The essential boundary condition must be enforced in eqn (5.27) together
with the nodal values along the initial plane t = 0. The equations (5.27) then
give the solution at time T . This solution may then be used to step forward in
time again, and the whole time development of the solution may be obtained
in a stepping manner very similar to that used in the finite difference method
(Smith 1985).

To illustrate the procedure, consider the one-dimensional problem

∂2u

∂x2
=

∂u

∂t

subject to the boundary conditions

u(0, t) = t, u(2, t) = 2 + t

and the initial condition

u(x, 0) = 1
2x2.

Suppose that eight triangular elements are used in the xt plane, where the time
step and the mesh size are each one unit, as shown in Fig. 5.1.

The element matrices for this problem may be obtained by using the results
and notation of Section 3.8 with y replaced by t, as follows. The shape function
matrix is

4

7 8 9

6

321

[1]

[2]

[3]

[4]

5

[7]
[8][6]

[5]

x

t

Fig. 5.1 Eight-element discretization for the problem of Example 5.3.
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Ne = [L1 L2 L3]

so that, using eqn (5.28),

ke
ij =

bibj

4A
+

∫ ∫
A

Li
cj

2A
dx dt,

i.e.

ke
ij =

bibj

4A
+

ci

6
.

Thus, using the results of Exercise 5.6,

k1 =

1 2 4⎡
⎢⎣

1
3 − 1

2
1
6

− 2
3

1
2

1
2

− 1
6 0 1

6

⎤
⎥⎦

1

2

4

, k2 =

4 2 5⎡
⎢⎣

1
2 − 1

6 − 1
3

0 − 1
6

1
6

− 1
2 − 1

6
2
3

⎤
⎥⎦

4

2

5

,

k3 =

2 3 5⎡
⎢⎣

1
3 − 1

2
1
2

− 2
3

1
2

1
6

− 1
6 0 1

6

⎤
⎥⎦

2

3

5

, k4 =

5 3 6⎡
⎢⎣

1
2 − 1

6 − 1
3

0 − 1
6

1
6

− 1
2 − 1

6
2
3

⎤
⎥⎦

5

3

6

.

In the overall system of equations, it is only the equation for U5 that need be
set up. This equation is

[K51 K52 K53 K54 K55 K56] [U1 . . . U6]
T = 0,

i.e. (− 1
6 − 1

6

)
U2 +

(
0 − 1

6

)
U3 − 1

2U4 +
(

2
3 + 1

6 + 1
2

)
U5 − 1

3U6 = 0.

Enforcing the essential boundary conditions

U3 = 2, U4 = 1, U6 = 3

and the initial condition

U2 = 1
2 ,

it follows that U5 = 3
2 .

To step forward to the next time level, t = 2, it is clear that

kn+4 = kn, n = 1, 2, 3, 4,

and the difference equation at node 8 thus becomes

−1
3U5 − 1

6U6 − 1
2U7 + 4

3U8 − 1
3U9 = 0.
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Enforcing the boundary conditions and the previously calculated value of U5, it
follows that U8 = 5

2 .
The procedure may be repeated until the required time level is reached. The

solution at points inside an element may be found from the nodal values using
the usual linear interpolation polynomials.

The wave equation may be treated in a similar manner; see Exercise 5.8.

Example 5.4 Consider again the initial-boundary-value problem of Example 5.3
but in this case suppose that the approximation in each element is, instead of
eqn (5.26), given by

(5.31) ũe = Ne(x, y)Ue(t),

where the nodal values are now assumed to be functions of time. Then, using
Galerkin’s method, the weighted residual equations become∫ ∫

D

(
−∇2ũ +

1
α

∂ũ

∂t

)
wi dx dy +

∫
C2

(
∂ũ

∂n
+ σũ − h

)
wi ds = 0.

Thus, substituting the approximation given by eqns (5.25) and (5.31) and using
Green’s theorem, these become

∑
e

∫ ∫
[e]

∑
j∈[e]

(
grad wi · grad Ne

j

)
Uj dx dy +

∑
e

∫ ∫
[e]

1
α

∑
j∈[e]

wiN
e
j

dUj

dt
dx dy

+
∑

e

∫
Ce

2

σ
∑
j∈[e]

wiN
e
j Uj ds −

∑
e

∫
Ce

2

hwi ds = 0.

This system is seen to be a set of ordinary differential equations of the form

(5.32) CU̇ + KU = F,

where K and F are the usual overall stiffness and force matrices and the matrix C

is often referred to as the overall conductivity matrix, since the diffusion equation
models heat conduction. Since ce =

∫∫
[e]

NeT

Ne dx dy (cf. the mass matrix me

in Exercise 3.24), it is clear that C is symmetric. Some authors, by virtue of the
structural origins of the finite element method, refer to C as the damping matrix.

A finite difference approach to the solution of this system of equations is to
take a sequence of time steps of length Δt from time level j to j + 1.

Using a forward difference scheme given by

U̇ ≈ (Uj+1 − Uj)/Δt,

eqn (5.32) becomes approximated by

(5.33)
1

Δt
CUj+1 +

[
K − 1

Δt
C

]
Uj = Fj .
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Knowing the initial value U0, the time-stepping procedure can start and the
solution be developed by marching forward to the next time level, etc.

To illustrate the method, return to the one-dimensional problem of Exam-
ple 5.3. In this case, two elements are used in space and these are taken to be
simple linear elements of the type discussed in Section 3.5. Thus, using the results
of that section,

K =

⎡
⎣ 1 −1 0
−1 2 −1

0 −1 1

⎤
⎦.

The element conductivity matrix is given by

ce =
∫ 1

−1

[
1
2 (1 − ξ)
1
2 (1 + ξ)

] [
1
2
(1 − ξ)

1
2
(1 + ξ)

]
h

2
dξ,

where h is the length of the element as in Section 3.5. For the problem under
consideration, h = 1, and thus

ce =
1
6

[
2 1
1 2

]
.

The overall conductivity matrix is, therefore,

C =
1
6

⎡
⎣ 2 1 0

1 4 1
0 1 2

⎤
⎦.

If the three nodes are situated at x = 0, 1, 2 and if Δt = 1, it follows that, since
Fj = 0, eqn (5.33) yields the set of equations

1
6

⎡
⎣ 2 1 0

1 4 1
0 1 2

⎤
⎦
⎡
⎣ U1

U2

U3

⎤
⎦

j+1

+
1
6

⎡
⎣ 4 −7 0

−7 8 −7
0 −7 4

⎤
⎦
⎡
⎣ U1

U2

U3

⎤
⎦

j

=

⎡
⎣ 0

0
0

⎤
⎦.

Initially, U0 =
[
0 1

2 2
]T and the boundary conditions give

U1j = j Δt = j, U3j = 2 + j Δt = 2 + j;

thus, at time level 1,

1 + 4U21 + 3 + 8 × 1
2 − 7 × 2 = 0,

which gives U21 = 3
2 . Similarly, at time level 2,

2 + 4U22 + 4 − 7 + 8 × 3
2 − 7 × 3 = 0,

which gives U22 = 5
2 .
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Other difference schemes could of course be used instead of forward differ-
ences in eqn (5.32); this approach actually replaces Uj by a suitably truncated
Taylor series. If, instead, a weighted residual approach in time is used, a more
general recurrence relation can be set up (Zienkiewicz and Taylor 2000a).

Suppose that between time levels j and j + 1, Ui(t) is interpolated by

Ui(t) = [1 − τ τ ][Uij Uij+1]T ,

where t = (j + τ) Δt with 0 ≤ τ ≤ 1; see Fig. 5.2.
Then

U̇i(t) =
1

Δt
[−1 1] [Uij Uij+1]

T
.

Using the same interpolation for F, eqn (5.32) may be written as

(5.34)
1

Δt
C[Uj+1 − Uj ] + K [τUj+1 + (1 − τ)Uj ] = τFj+1 + (1 − τ)Fj .

Thus, multiplying by a weighting function v, and integrating with respect to τ

from 0 to 1, eqn (5.34) becomes

(5.35)
[

1
Δt

C + rK

]
Uj+1 +

[
− 1

Δt
C + (1 − r)K

]
Uj = rFj+1 + (1 − r)Fj ,

where r =
∫ 1

0
τv dτ/

∫ 1

0
v dτ .

Equation (5.35) is a recurrence formula for the nodal values at two time
levels. By choosing different values for the parameter r, well-known difference
formulae are recovered; for example, r = 0, 1

2 and 1 give the forward, Crank–
Nicolson and backward difference formulae, respectively. Recurrence formulae
for nodal values at three time levels may be obtained by integrating over two
consecutive time intervals in the weighted residual equation; see Exercise 5.10.
Finally, the procedure may also be adopted to solve second-order equations of
the form

MÜ + CU̇ + KU = F,

1- τ

τ = 1τ = 0

j j + 1

τ

Fig. 5.2 Node i at times levels j and j + 1, showing the linear interpolation polynomials
in time.
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which arise in the finite element solution of propagation problems; see Exer-
cises 5.11 and 5.12.

This discussion of time-dependent problems has been necessarily brief; for
further details, there are two excellent chapters in the book by Zienkiewicz et al.
(2005).

As well as time-dependent problems, the weighted residual method may
also be used to tackle non-linear problems as illustrated in Example 5.5. In these
cases, however, the resulting system of algebraic equations is no longer linear,
and iterative techniques are usually necessary for their solution.

Example 5.5 Consider the equation

−div(k grad u) = f in D

subject to the boundary conditions

u = g on C1,

k
∂u

∂n
+ σu = h on C2.

In this case suppose that k, f , σ and h all depend on u as well as on position.
The weighted residual method may be applied in the usual manner, and if the
weighting functions are the nodal functions, then the element matrices become

ke(Ue) =
∫ ∫

[e]

kαT α dx dy,(5.36)

k̄e(Ue) =
∫

Ce
2

σNeT

Ne ds,

fe(Ue) =
∫ ∫

[e]

fNeT

dx dt,

f̄e(Ue) =
∫

Ce
2

hNe ds

(cf. eqns (3.45)–(3.48)). However, in this case the unknown u occurs under the
integral sign, so that the matrices themselves are functions of the nodal variables.
The overall system is assembled in the usual way to yield a set of equations of
the form

(5.37) K(U)U = F(U).

To illustrate the idea, consider the one-dimensional problem

−(uu′)′ + 1 = 0, 0 < x < 1,

u(0) = 1, u(1) = 0.
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Suppose that two linear elements of the type discussed in Section 3.5 are used.
Then

ke(u) =
∫ 1

−1

u

[−1/h

1/h

]
[−1/h 1/h]

h

2
dξ

=
1
2h

[
1 −1

−1 1

] ∫ 1

−1

[
1
2 (1 − ξ) 1

2 (1 + ξ)
]
[uA uB]T dξ,

where the notation of Fig. 3.7 is used. Thus

ke(Ue) =
UA + UB

2h

[
1 −1

−1 1

]
.

With the two-element idealization of Fig. 3.6, it follows that, with h = 1
2 ,

K(U) =

1 2 3⎡
⎣U1 + U2 −U1 − U2 0

U1 + 2U2 + U3 −U2 − U3

sym U2 + U3

⎤
⎦ 1

2

4

.

Since f ≡ −1, it follows from Example 3.1 that

F = − 1
4

1[
1

2

2
3

1 ]T .

The only node without an essential boundary condition is node 2; thus assembling
only the equation for node 2 yields

(−U1 − U2)U1 + (U1 + 2U2 + U3)U2 + (−U2 − U3)U3 = − 1
2 .

Since U1 = 1 and U3 = 0, it follows that

U2
2 = 1

4

and hence that

U2 = ± 1
2 .

The non-linear algebraic system has led to two possible solutions, and some
knowledge of the behaviour of the solution to the original boundary-value prob-
lem is necessary in order that the correct value may be chosen. In this case, it may
be shown that the solution U2 = − 1

2 is not possible, since this would imply that
there is a point xp ∈ (0, 1) with the properties U(xp) < 0, U(xp) = 0, U ′′(xp) > 0.
These properties are not consistent with the original differential equation. Thus
the solution required is U2 = 1

2 . This situation is typical of non-linear problems,
where it is extremely useful to have some intuitive idea of the behaviour of the
solution or the physics of the problem.
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The problem considered here is of course very simple, leading to a non-linear
algebraic equation whose solution is amenable to hand calculation. In practice,
this does not occur, and numerical methods of solution are necessary. In general,
either an iterative or incremental approach is adopted. Write eqn (5.37) as

(5.38) A(U) ≡ K(U)U − F(U) = 0;

then the Newton–Raphson method gives the following iterative scheme:

(5.39) Un+1 = Un − G−1
n A(Un),

where

Gn = [∂Ai/∂Uj ]n.

The solution proceeds by assuming an initial value U0 and then iterating with
eqn (5.39) until sufficient accuracy is obtained.

Unfortunately, an iterative approach will not always converge; however,
incremental methods will always converge. Suppose that, for some given value
F0 of F, eqn (5.38) has the known solution U0; then the solution proceeds by
adding small increments to F and finding the corresponding increments in U.
Write eqn (5.37) as

H(U) − λF∗ = 0,

where

H(U) = K(U)U and λF∗ = F(U).

Then, differentiating with respect to λ,

J
dU

dλ
− F∗ = 0,

where

(5.40) J = [∂Hi/∂Uj ];

thus

(5.41)
dU

dλ
= J−1F∗.

Using a forward difference to approximate the derivative in eqn (5.41),

(Un+1 − Un)/Δλn = J−1
n F∗,

where

Jn = J(Un).



Further topics in the finite element method 189

Thus the incremental scheme is

(5.42) Un+1 = Un + J−1
n ΔFn,

where ΔFn = ΔλnF∗ is the nth increment in F. Simple problems illustrating
the use of these methods may be found in Exercises 5.13–5.16.

It has been the intention of this section to illustrate the way in which the
Galerkin finite element approach may be used to solve time-dependent and non-
linear problems. Only simple examples have been introduced, the general area of
such problems being well beyond the scope of this text. Much research has been
conducted in these areas, and the interested reader is recommended to consult
the books by Zienkiewicz and Taylor (2000a,b) for references to specific subject
areas such as plasticity, electromagnetic theory and viscous flow.

5.4 Time-dependent problems using variational principles
which are not extremal

In Section 2.9, variational principles for time-dependent problems were intro-
duced. In this section, they are used to develop finite element solutions to
the wave and heat equations. Some authors feel that a direct approach to the
problem at hand is better than using such variational problems, either because
the solutions do not yield extrema for the functionals involved (Finlayson and
Scriven 1967) or because a weighted residual approach is more general, since
there is always a Galerkin method equivalent to a given variational principle
(Zienkiewicz and Taylor 2000a). However, it is a possible approach when such
principles exist and a suitable functional is known, and it gives users another
weapon in their finite element armoury.

Example 5.6 (Noble 1973). Consider the wave equation

(5.43)
∂2u

∂x2
=

1
c2

∂2u

∂t2
, 0 < x < 1, t > 0,

subject to the boundary conditions

(5.44) u(0, t) = u(l, t) = 0

and the initial conditions

u(x, 0) = f(x),(5.45)
∂u

∂t
(x, 0) = g(x).(5.46)

From Section 2.9, it follows that the functional (2.75) is stationary at the solution
of eqn (5.43) subject to eqn (5.44) and (5.45) and a condition at time Δt of
the form
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u(x,Δt) = h(x),

which replaces eqn (5.46).
Of course, h(x) is not known; however, it is treated as if it is known and

then, at the end of the analysis, eqn (5.46) is used to eliminate this unknown
function.

Suppose that l = 1 and that [0, 1] is divided into E elements. Consider the
usual finite element approximation

ũ =
∑

e

ũe,

where

ũe = Ne(x)Ue(t).

Then, using the functional (2.75),

I =
∑

e

{
c2

∫ Δt

0

UeT

(∫ 1

0

αT α dx

)
Ue dt −

∫ Δt

0

U̇eT

(∫ 1

0

NeT

Ne dx

)
U̇e dt

}
,

(5.47)

where, as usual, α= dNe/dx.
For the linear element of length h discussed in Section 3.5, the x integrations

are easily performed to yield the two matrices

1
h

[
1 −1

−1 1

]
and

h

6

[
2 1
1 2

]
.

These are just the usual element stiffness and mass or conductivity matrices, see
Exercise 3.24 and Example 5.4.

To satisfy the essential conditions at node i at times t = 0 and t = Δt, set
U(0) = fi and U(Δt) = hi. Now U(t) may be interpolated between t = 0 and
t = Δt as a quadratic function

(5.48) Ui(t) = (1 − τ2)fi + τ2hi + ai Δt(τ − τ2),

where τ = t/Δt and ai = U̇i(0). Also,

U̇i(t) =
2

Δt
(hi − fi) + ai(1 − 2τ).

At this stage ai is treated as unknown, so that substitution of eqn (5.48) into
eqn (5.47) gives I = I(a1, . . . , an).

Stationary values of I occur when ∂I/∂ai = 0, i = 1, . . . , n. If I =
∑

e Ie,
then
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∂Ie

∂ai
= 2

∫ 1

0

{
c2

h
(Ui − Ui−1) Δt(τ − τ2) − h

6
(2U̇i + U̇i−1)(1 − 2τ)

}
Δt dτ

= h

{
−

(
1
9

+
7μ2

30

)
fi−1 +

(
7μ2

30
− 2

9

)
fi

+
(

1
9
− μ2

30

)
hi−1 +

(
μ2

10
+

2
9

)
hi

+ Δt

[
−

(
1
9

+
μ2

15

)
ai−1 +

(
μ2

15
− 2

9

)
ai

]}
,

where μ = c Δt/h.

A similiar result may be obtained when element [e] contains nodes i and
i + 1. Assembling the complete equations

∑
e ∂Ie/∂ai = 0 yields

−
(

1
9

+
7μ2

30

)
fi−1 + 2

(
7μ2

30
− 2

9

)
fi −

(
1
9

+
7μ2

30

)
fi+1

+
(

1
9
− μ2

30

)
hi−1 + 2

(
μ2

10
+

2
9

)
hi +

(
1
9
− μ2

30

)
hi+1

+ Δt

[
−

(
1
9

+
μ2

15

)
ai−1 + 2

(
μ2

15
− 2

9

)
ai −

(
1
9

+
μ2

15

)
ai+1

]
= 0.(5.49)

This system of equations allows hi to be found, since fi and ai are known.
To illustrate the technique, suppose that c = 1 and

f(x) =

{
x, 0 ≤ x ≤ 1

2 ,

1 − x, 1
2 ≤ x ≤ 1,

g(x) = 0.

Take four equal elements along the x-axis and suppose that Δt = 0.1, so that
μ = 0.4. Then the difference equation for the unknown function h is

0.1058hi−1 + 0.4764hi + 0.01058hi+1 = 0.1484(fi−1 + fi+1) + 0.3698fi

+ 0.01218(ai−1 + ai+1) + 0.04231ai,

i = 2, 3, 4.(5.50)

Now the boundary conditions give

f1 = f5 = h1 = h5 = 0,

and the initial conditions give f2 = 0.25, f3 = 0.5, f4 = 0.25, ai = 0. Substitut-
ing these values in eqn (5.49) and solving the resulting equation yields

h2 = h4 = 0.254, h3 = 0.431
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and

(5.51) U̇(0.1) = 20(hi − fi) − ai = bi, say.

However, hi − fi is the difference between two nearly equal numbers and, to
avoid inaccuracies, hi is eliminated between eqns (5.50) and (5.51) to give

0.00529bi−1 + 0.02382bi + 0.00529bi+1 = 0.0426(fi−1 + fi+1) − 0.1066fi

+ 0.00689(ai−1 + ai+1) + 0.01849ai.

Using the initial conditions and boundary conditions previously stated,
together with b1 = b5 = 0, three equations may be obtained, to yield the solutions

b2 = b4 = 0.082, b3 = −1.380.

The procedure may now be repeated using the calculated values at t = Δt to step
forward in time once again. Thus a step-by-step method has been developed, and
the solution at any time t may be obtained by taking a sufficiently large number
of steps.

The use of a time-dependent variational principle in the finite element
solution of the heat equation is considered in Exercise 5.18. The principle involved
is in fact related to another principle, developed by Gurtin (1964) using the
Laplace transform. This will not be discussed here; instead, a procedure using
the Laplace transform directly will be considered in the next section.

5.5 The Laplace transform

Until recently, this approach has not been particularly popular. However, the
use of Stehfest’s numerical inversion method (Stehfest 1970a,b) has developed
a new interest in the Laplace transform associated with finite element methods
(Moridis and Reddell 1991). A very good introduction to the use of the Laplace
transform for diffusion problems has been given, in the context of boundary
integral methods, by Zhu (1999).

Example 5.7 Consider the diffusion equation

(5.52)
∂2u

∂x2
=

1
α

∂u

∂t
, 0 < x < l, t > 0,

subject to the boundary conditions

u(0, t) = g1(t), u(l, t) = g2(t)

and the initial condition

u(x, 0) = f(x).
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If

ū(x;λ) =
∫ ∞

0

e−λtu(x, t) dt

is the Laplace transform in time of u(x, t), then, using the Laplace transform,
eqn (5.52) becomes the ordinary differential equation

d2ū

dx2
=

1
α

(λū − f(x)),

which we write as

−d2ū

dx2
+

λ

α
ū =

1
α

f(x).

The boundary conditions transform to

ū(0;λ) = ḡ1(λ), ū(l;λ) = ḡ2(λ).

The effect of the Laplace transform is to remove the time dependence and the
initial condition, leaving a two-point boundary-value problem to be solved. It
is not difficult to see that for two-dimensional diffusion problems, the parabolic
nature is removed, leaving an elliptic boundary-value problem.

To illustrate the approach, consider again the one-dimensional problem
presented in Example 5.3. Then, using the Laplace transform, the equation and
boundary conditions become

−ū′′ + λū = 1
2x2,

ū(0;λ) =
1
λ2

, ū(2;λ) =
2
λ

+
1
λ2

.

Using two equal linear elements, the overall matrices may be obtained from
Example 5.4 and Exercise 3.24 as

K =

⎡
⎣ 1 −1 0
−1 2 −1

0 −1 1

⎤
⎦ , C = 1

6

⎡
⎣2 1 0

1 4 1
0 1 2

⎤
⎦ .

The element force vectors are

f1 =
∫ 1

0

1
2x2 [1 − x x]T dx = 1

24 [1 3]T ,

f2 =
∫ 2

1

1
2x2 [2 − x x − 1]T dx = 1

24 [11 17]T .

Thus, F = 1
24 [1 14 17]T . Now, after enforcing the essential boundary

conditions
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Ū1 =
1
λ2

, Ū3 =
2
λ

+
1
λ2

,

there is just one equation for Ū2:

− 1
λ2

+ 2Ū2 −
(

2
λ

+
1
λ2

)
+

λ

6

(
1
λ2

+ 4Ū2 +
2
λ

+
1
λ2

)
=

7
12

,

which yields

Ū2 =
1
λ

+
1
λ2

− 1
8(3 + λ)

.

Inverting then gives

(5.53) U2(t) = 1
2 + t − 1

8e−3t.

A drawback in this approach is the fact that the transform variable λ is
carried through the analysis. This causes no difficulty in the simple hand calcu-
lation given, but it is not at all convenient for a numerical procedure. In practice,
the equations could be solved for discrete set of values λ1, λ2, . . . , λM and the
resulting transforms inverted numerically. Before we consider this approach, we
shall illustrate the use of the convolution theorem.

Example 5.8 Consider the wave equation with boundary and initial conditions
as in Example 5.6. Then, taking the Laplace transform,

c2 d2ū

dx2
= λ2ū − λf(x) − g(x),

i.e.

−c2

λ2

d2ū

dx2
+ ū =

1
λ

f(x) +
1
λ2

g(x).

This equation may be inverted as

(5.54) −c2 d2

dx2
(t ∗ u) + u = f(x) + tg(x),

where the convolution integral is given by

F (t) ∗ G(t) =
∫ t

0

F (t − u)G(u) du.

One way of solving the integro-differential equation (5.54) is to use an
appropriate functional (Martin and Carey 1973). An alternative procedure, which
will be used here, is to assume a time variation for u in the interval 0 ≤ t ≤ Δt,
evaluate the convolution integral and use a finite element analysis to solve the
resulting two-point boundary-value problem.
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Suppose that the approximation is

ũ =
∑

e

ũe,

where

ũe =
∑
i∈[e]

Ne
i (x)Ui(t).

The time variation for Ui is taken to be given by

Ui(t) = [(1 − τ2) τ2 Δt(τ − τ2)][Ui(0) Ui(Δt) U̇i(0)]T

with τ = t/Δt. Then

t ∗ ũ =
∑

e

∑
i∈[e]

Ne
i (x)t ∗ Ui

=
∑

e

∑
i∈[e]

Ne
i (x)Δt2

[
5
12Ui(0) + 1

12Ui(Δt) + 17
60Δt U̇i(0)

]
at t = Δt,

=
∑

e

∑
i∈[e]

Ne
i (x)

Δt2

60
(25fi + 5hi + 7Δt ai)

using the notation of eqn (5.48). Thus, using the two-node linear element in the
space variable x (see Fig. 3.7), it follows that the element matrices are

ke =
c2

h

[
1 −1

−1 1

]
, mc =

h

6

[
2 1
1 2

]

and

fe =
∫ 1

−1

1
2

[
1 − ξ

1 + ξ

]
[f(x) + Δt g(x)]

h

2
dξ

= me

[
fi−1 + Δt ai−1

fi + Δt ai

]
.

Thus the overall system is assembled in the usual way to give the following
difference equation at node i:

−
(

1
6

+
5μ2

12

)
fi−1 +

(
5μ2

6
− 2

3

)
fi −

(
1
6

+
5μ2

12

)
fi+1

+
(

1
6
− μ2

12

)
hi−1 +

(
2
3

+
μ2

6

)
hi +

(
1
6
− μ2

12

)
hi+1(5.55)

+ Δt

[
−

(
1
6

+
17μ2

60

)
ai−1 +

(
17μ2

30
− 2

3

)
ai −

(
1
6

+
17μ2

60

)
ai+1

]
= 0,

where μ = c Δt/h.
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Then, just as for eqn (5.49), this set of equations can be solved to find hi,
since fi and ai are known. The value of Ui(Δt) is then found using

(5.56) Ui(Δt) =
2

Δt
(hi − fi) − ai

and then eliminating hi between eqns (5.55) and (5.56) as before.

In Examples 5.7 and 5.8, the inversion of the Laplace transform has been
effected in closed form. In practice, this is usually not possible, and numerical
inversion is required. There are many possibilities (Davies and Martin 1979),
and for diffusion problems it has been shown that Stehfest’s method provides a
suitable approach. One advantage of the method is that the solution is found
at a specific time τ without the necessity for solutions at preceding times, as
is the case with the finite difference approach (see Example 5.4). Consequently,
the method does not exhibit the stability problems associated with the finite
difference method; see Section 7.5.

In Stehfest’s method we choose a specific time value, τ , and a set of
transform parameters

(5.57) λj = j
ln 2
τ

, j = 1, 2, . . . ,M, where M is even.

If ū(x;λ) is the Laplace transform of u(x, t), then

u(x, τ) ≈ ln 2
τ

M∑
j=1

wj ū(x;λj),

where the weights, wj , are given by (Stehfest 1970a,b)

wj = (−1)M/2+j

min(j,M/2)∑
[(1/2)(1+j)]

kM/2(2k)!
(M/2 − k)! k! (k − 1)! (j − k)! (2k − j)!

,

and some values of wj are shown in Appendix E (Davies and Crann 2004).

Example 5.9 Consider again the problem of Example 5.7 with two linear ele-
ments, leading to the transformed value

Ū2 =
1
λ

+
1
λ2

− 1
8(3 + λ)

.

We shall evaluate the solution at t = 1 with M = 2:

λ1 = 1
ln 2
1

= 0.693147, λ2 = 2
ln 2
1

= 1.386294,

Ū2(λ1) = 3.490218, Ū2(λ2) = 1.213192,

U2(1) ≈ 3.16.
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This compares rather poorly with the exact inversion, U2(1) ≈ 1.994, given by
eqn (5.53). This is due to the fact that we have used M = 2. Much better results
are obtained with higher values of M ; see Exercise 5.20.

Now consider the two-dimensional problem

(5.58) ∇2u =
1
α

∂u

∂t
in D

subject to the boundary conditions

u = g(s, t) on C1,

∂u

∂n
+ σ(s)u = h(s, t) on C2

and the initial condition

u(x, y, 0) = u0(x, y).

Then, taking the Laplace transform of eqn (5.58), we obtain

(5.59) −∇2ū +
λ

α
ū =

1
α

u0 = 0 in D

subject to the boundary conditions

ū = ḡ(s;λ) on C1

and

∂ū

∂n
+ σ(s)ū = h̄(s;λ) on C2.

Just as in Sections 3.6 and 5.3, we can set up the finite element equations for
eqn (5.59) in the form

KŪ +
λ

α
CŪ = F.

Example 5.10 Use three equal linear elements to solve the problem

∂2u

∂x2
=

∂u

∂t
0 < x < 1,

subject to

u(0, t) = 0, u(1, t) = 0,

u(x, 0) = 2.
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Using the results of Exercise 3.24, the overall system of equations for the
Laplace transform Ū = [Ū2 Ū3]T is

1
h

[
2 −1

−1 2

] [
Ū2

Ū3

]
+

λh

6

[
4 1
1 4

] [
Ū2

Ū3

]
= h

[
2
2

]
,

which, with h = 1
3 , simplifies to

aŪ2 − bŪ3 = 2
3 ,

−bŪ2 + aŪ3 = 2
3 ,

where a = 6 + 2λ/9 and b = 3 − λ/18.
Solving these equations yields

Ū2 =
2

3(a − b)
= Ū3.

U2 and U3 may be obtained using Stehfest’s inversion. A spreadsheet solution is
shown in Fig. 5.3.

We see from Fig. 5.3 that at t = 0.1,

U2 = U3 = 0.813.

The exact solution of eqn (5.58) subject to the given conditions is

u(x, t) =
8
π

∞∑
m=0

1
2m + 1

sin((2m + 1)πx) exp(−(2m + 1)2π2t),

and the approximate values U2 and U3 compare very well with the exact values

u
(

1
3 , 0.1

)
= u

(
2
3 , 0.1

)
= 0.822.

Fig. 5.3 Spreadsheet for the problem in Example 5.10.
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5.6 Exercises and solutions

Exercise 5.1 A beam on an elastic foundation has a functional given by
eqn (2.77) in Exercise 2.16 as

I[u] =
∫ 1

0

{
ku2 + EI(u′′)2 + 2uf

}
dx.

The functional here contains second derivatives, so that it is necessary that
the trial functions have continuous first derivatives. A suitable element for the
problem is shown in Fig. 4.6, with the shape functions given by eqns (4.6)–(4.9).
Obtain the element stiffness and force matrices.

Exercise 5.2 Repeat Exercise 3.7 using the variational approach.

Exercise 5.3 Consider the boundary-value problem

Lu = f in D

subject to

Bu = b on C,

to be solved by the overdetermined collocation method. Substitute the usual
finite element approximation into the residual and show that in each element,
the following set of equations may be obtained:

(5.60) LeUe = fe,

where the ith rows of Le and fe are obtained by evaluating L(Ne) and f at
collocation point i in element e.

Use the method of least squares to reduce eqn (5.60) to the form

keUe = f̃e.

Illustrate the procedure for the case

L ≡ − d2

dx2
, f(x) = x, 0 < x < 1,

with u(0) = u(1) = 0.

Exercise 5.4 Poisson’s equation (5.22) is to be solved using the least squares
finite element method. Introduce auxiliary variables ξ and η so that the system
of equations to be solved is given by eqns (5.23) and (5.24).

By taking linear variations in ξ and η and quadratic variations in u, set up
the element approximation in the form ve = NeUe for a triangular element with
six nodes; see Fig. 4.5. Hence obtain expressions for the element stiffness and
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force matrices. The results of Exercise 4.6 allow an explicit form for ke to be
obtained in this case.

Exercise 5.5 Show how Galerkin’s method may be used to solve a system of
equations of the form

(5.61) Lu = f ,

where L is a matrix of differential operators given by

L = [Lij ]

and

u = [u1 . . . up]T .

By considering the one-dimensional form of Poisson’s equation, −d2u/dx2 = f ,
which may be written as a system of equations by introducing the variable q =
−du/dx, show that the Galerkin approach is not unique and that the symmetry
of the resulting system of equations depends on the ordering of eqn (5.61).

Exercise 5.6 The diffusion equation is to be solved using triangular space–time
elements. Obtain the stiffness matrices for the two triangles in the xt plane shown
in Fig. 5.4. Hence obtain the difference equation for node i at time step j.

Exercise 5.7 Find the solution at time t = 1 to the problem in Example 5.4
using six space–time elements of the type used in Exercise 5.6.

Exercise 5.8 Obtain an expression for the stiffness matrix for the wave equation
using elements in which the shape functions are functions of position and time.

Exercise 5.9 Rework Exercise 5.7 using three equal space elements and a forward
difference scheme in time given by eqn (5.33).

Exercise 5.10 Write down the difference equation equivalent to eqn (5.34),
valid for (j − 1)Δt ≤ t ≤ j Δt. Using Galerkin’s method in time, show that the

1

3

3

2 2

1

x

t

Dt Dt

Dx

Dx

Fig. 5.4 Two triangles in the xt plane for Exercise 5.6.
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following three-level difference equation may be obtained:[
1

Δt
C +

1
3
K

]
Uj+1 +

4
3
KUj +

[
− 1

Δt
C +

1
3
K

]
Uj−1 =

1
3

[Fj+1 + 4Fj + Fj−1] .

Exercise 5.11 Consider the equation of telegraphy, the wave equation with
damping:

∇2u =
1
c2

∂2u

∂x2
+ μ

∂u

∂t
.

Show that if a finite element idealization in space is used, with the nodal values
considered as functions of time, then the overall system of equations is of the
form

(5.62) MÜ + CU̇ + KU = F.

Exercise 5.12 For the overall system of equations (5.62), suppose that U(t) is
interpolated between the three time levels j − 1, j, j + 1 by

Ui(t) =
[
1
2 (τ2 − τ) 1 − τ2 1

2 (τ2 + τ)
]
[Uij−1 Uij Uij+1]T ,

where t = (j + τ)Δt with −1 ≤ τ ≤ 1. Suppose also that Fi is interpolated in
the same way. By using a weighting function W , set up a recurrence relation
between Uj−1, Uj and Uj+1 in terms of the parameters

β =
∫ 1

−1

1
2 (τ2 + τ)Wdτ

/∫ 1

−1

Wdτ ,

γ =
∫ 1

−1

(τ + 1
2 )Wdτ

/∫ 1

−1

Wdτ .

Exercise 5.13 Solve the problem of Example 5.5 using three linear elements.

Exercise 5.14 Solve the non-linear two-point boundary-value problem

(euu′)′ = ex, 0 < x < 1,

u(0) = 0, u(1) = 1,

using two linear elements.

Exercise 5.15 Repeat Exercise 5.13 making use of the Newton–Raphson scheme
given by eqn (5.41); perform one iteration.

Exercise 5.16 Repeat Exercise 5.13 using an incremental method. Choose suit-
able starting vectors and use two equal increments for the force vector.

Exercise 5.17 The magnetic scalar potential φ in a magnetic material with
zero current density satisfies the equation div {μ(H) grad φ} = 0, where the
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permeability μ is a function of the magnetic field strength; φ is related to the
magnetic field by H = −grad φ (see Appendix A). Show that the matrix J of
eqn (5.40) can be assembled from the element matrices given by

je = ke + k̂e,

where ke is the usual element stiffness matrix and

k̂e =
∫ ∫

[e]

dμ

dH
H2αT α dx dy.

Exercise 5.18 Using the functional (2.76) and the method of Example 5.6, show
that the difference equation for the heat equation

∂2u

∂x2
=

1
α

∂u

∂t
, 0 < x < 1, t > 0,

subject to the initial condition u(x, 0) = f(x), is

4(1 + μ)hi + (1 − 2μ)(hi−1 + hi+1) = 4(1 − 2μ)fi + (1 + 4μ)(fi−1 + fi+1),

where fi = U(0), hi = U(Δt) and μ = k Δt/h2.

Exercise 5.19 Using the Laplace transform and two linear space elements, find
the solution at x = 1

2 to the wave equation

∂2u

∂x2
=

∂2u

∂t2
, 0 < x < 1, t > 0,

subject to the initial conditions

u(x, 0) = 0,
∂u

∂t
(x, 0) = π sinπx

and the boundary conditions u(0, t) = u(1, t) = 0.

Exercise 5.20 Solve the problem of Example 5.9 using two linear elements
together with the Stehfest Laplace transform inversion with M = 8.

Exercise 5.21 Solve the problem of Example 5.10 using four equal elements, and
compare the results with the exact solution.

Solution 5.1 The procedure for obtaining the finite element equations follows
in exactly the same way as in Chapter 3; in this case

∂Ie

∂ui
=

∫ 1

−1

⎛
⎝kNi

4∑
j=1

Njuj +
4EI

h2
N ′′

i

4∑
j=1

N ′′
j uj + Nif

⎞
⎠ h

2
dξ.
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Thus it follows that

kij =
∫ 1

−1

(
kNiNj +

4EI

h2
N ′′

i N ′′
j

)
h

2
dξ,

fi = −
∫ 1

−1

Nif
h

2
d ξ.

Performing the integrations,

ke =
kh

420

⎡
⎢⎢⎣

156 22h 54 −13h

4h2 13h −3h2

156 −22h

sym 4h2

⎤
⎥⎥⎦ +

EI

h3

⎡
⎢⎢⎣

12 6h −12 6h

4h2 −6h 2h2

12 −6h

sym 4h2

⎤
⎥⎥⎦ ,

fe =
fh

12
[−6 − h − 6 h]T .

Solution 5.2 For the generalized Poisson equation

−div(κ grad u) = f

subject to Dirichlet boundary conditions, the corresponding functional is given
by eqn (2.44) as

I[u] =
∫ ∫

D

{grad u · (κ grad u) − 2uf} dx dy +
∫

C2

(σu2 − 2uh) ds.

Thus, dividing the region D into E elements in the usual way, the approximate
solution is given by

ũ(x, y) =
∑

e

ũe(x, y)

=
∑

e

NeUe.

Thus, as in Section 5.1,

I[ũ] =
∑

e

Ie,

where in this case

Ie =
∫ ∫

[e]

{grad ũe · (κ grad ũe) − 2ũef} dx dy

= UeT

(∫ ∫
[e]

αTκα dx dy

)
Ue − 2

(∫ ∫
[e]

fNeT

dx dy

)
Ue

+

(
UeT

∫
Ce

2

σNeT

Ne

)
Ue − 2

(∫
Ce

2

hNeT

ds

)
Ue,
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where

α =
[

∂/∂x

∂/∂y

]
Ne.

Thus

∂Ie

∂U
=

(∫ ∫
[e]

α(κ + κT )α dx dy

)
Ue − 2

∫ ∫
[e]

fNeT

dx dy

+ 2

(∫
Ce

2

σNeT

Neds

)
Ue − 2

∫
Ce

2

hNeT

ds.

Hence we see that the element matrices fe, k̄e and f̄e are exactly as given in
Section 3.6 in eqns (3.47), (3.46) and (3.48).

The element stiffness matrix is

ke =
1
2

∫ ∫
[e]

αT (κ + κT )α dx dy,

and when κ is symmetric,

ke =
∫ ∫

[e]

αT κα dx dy.

Solution 5.3 (Kwok et al. 1977) Substituting the usual finite element approxi-
mation

ũ =
∑

e

NeUe

gives the residual

r =
∑

e

L(Ne)Ue.

The element residual is thus

re = L(Ne)Ue − f.

This residual is now minimized by taking me collocation points inside element
[e]. If there are Me degrees of freedom in each element, then me � Me. Suppose
that at the collocation point Pi, L(Ne) = Le

i and f = fi; then the residual at Pi is

re
i = Le

iU
e − fi,

and this residual is chosen to be zero.
Thus, in each element, there is a set of equations of the form

LeUe = fe.
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Since Le is a rectangular me × Me matrix, this constitutes an overdetermined
set, which may be solved by the least squares method, setting

∂

∂Ui

∑
j

(
re
j

)2 = 0.

This then yields the symmetric set of equations

keUe = f̃e,

where

ke = LeT

Le and f̃e = LeT

fe.

The overall system is then assembled in the usual way.
For the problem −u′′ = x, u(0) = u(1) = 0, it is necessary that the shape

functions have a continuous first derivative since L is a second-order differential
operator. Thus suppose that the Hermite elements of the type shown in Fig. 4.6
are used. The shape functions are given by eqn (4.8) and (4.9), so that

L(Ne) =
1
h2

[−6ξ h(1 − 3ξ) 6ξ − h(1 + 3ξ)] .

Consider the one-element solution with collocation at x = 0, 1
4 , 1

2 , 3
4 , 1; then

L =

⎡
⎢⎢⎢⎢⎣

6 4 −6 2
3 2.5 −3 0.5
0 1 0 −1

−3 −0.5 3 −2.5
−6 −2 6 −4

⎤
⎥⎥⎥⎥⎦

and f = [0 0.25 0.5 0.75 1]T . Thus

LT L =

⎡
⎢⎢⎣

90 45 −90 45
45 27.5 −45 17.5

−90 −45 90 −45
45 17.5 −45 27.5

⎤
⎥⎥⎦

and LT f = [−17.5 1.25 7.5 − 6.25]T .
Enforcing the essential boundary conditions U1 = U2 = 0 and solving the

resulting equations yields U ′
1 = 1

6 , U ′
2 = − 1

3 .

Solution 5.4 (Lynn and Arya 1973)

ξ = L1ξ1 + L2ξ2 + L3ξ3,

η = L1η1 + L2η2 + L3η3,

u = N1U1 + N2U2 + . . . + N6U6,
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where the Li are the usual triangular coordinates and the Ni are the shape
functions for the quadratic triangle (see eqns (4.4) and (4.5)), i.e.
ve = NeUe, where

ve = [ξ η u]T , Ue = [ξ1, . . . , η1, . . . , U1, . . . , U6]
T

and

Ne =

⎡
⎣L1 L2 L3

L1 L2 L3

N1 N2 N3 N4 N5 N6

⎤
⎦ .

Now eqns (5.23) and (5.24) may be expressed as Lv = f , where

L =

⎡
⎣ −1 0 ∂/∂x

0 −1 ∂/∂y

∂/∂x ∂/∂y 0

⎤
⎦ and f =

⎡
⎣ 0

0
−f

⎤
⎦ .

Thus the element residual vector is

r = LNeUe − f

= αUe − f , say,

where

α =

[
−ω 1

2AωB

1
2Ae 0

]
.

The matrices ω and B are defined in the solution to Exercise 4.6, and

e = [b1 b2 b3 c1 c2 c3]T .

Using the least squares method to minimize the residual gives

∂

∂vi

∑
e

∫ ∫
[e]

reT

re dx dy = 0,

i.e. ∑
e

∫ ∫
[e]

∂

∂vi

(
[UeT

αT − fT ][αUe − f ]
)

dx dy = 0.

The element equilibrium equations follow, with the stiffness and force
matrices given by

ke =
∫ ∫

[e]

αT α dx dy, fe =
∫ ∫

[e]

αT f dx dy.
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Using the results and notation of Exercise 4.6, it follows that

ke =

[
D + 1

4AeT e − 1
2ADB

− 1
2ABT D 1

4A2 B
T DB

]
.

Solution 5.5 The finite element approximation, in terms of nodal functions, is
easily generalized to problems involving more than one dependent variable to
give

ũ =
n∑

i=1

niU
e
i .

Then the Galerkin method for the solution of eqn (5.61) yields∫ ∫
D

nT
i [LU − f ] dx dy = 0.

In the case where L = −d/dx,

−u′′ = f

is replaced by the system

q + u′ = 0, q′ = f.

Write

q =
∑

i

wqiQi =
∑

e

∑
i

Ne
qiQi,

u =
∑

i

wuiUi =
∑

e

∑
i

Ne
uiUi.

Now

L =
[

1 d/dx

d/dx 0

]
;

thus it follows that the element stiffness matrix is of the form

ke =
[
kq 0
0 ku

]
,

where

ks
ij =

∫ 1

−1

[
NsiNsj Nsi

dNsj

dx

Nsi
dNsj

dx 0

]
h

2
dξ, s = q, u.

Notice that ke is symmetric.
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If, however, the equations are written in the reverse order so that

L =
[

d/dx 0
1 d/dx

]
,

then

ks
ij =

∫ 1

−1

[
Nsi

dNsj

dx 0

NsiNsj Nsi
dNsj

dx

]
h

2
dξ, s = q, u,

and a different form is obtained in which the symmetry is lost.

Solution 5.6 For element 1,

b1 = −Δt, b2 = Δt, b3 = 0,

c1 = −Δx, c2 = 0, c3 = Δx.

Thus

k1 =
Δt

6 Δx

1 2 3⎡
⎣ 3 − r −3 r

−3 − r 3 r

−r 0 r

⎤
⎦ 1

2

3

, where r =
Δx2

k Δt
.

For element 2,

b1 = Δt, b2 = −Δt, b3 = 0,

c1 = Δx, c2 = 0, c3 = −Δx.

Thus

k2 =
Δt

6 Δx

1 2 3⎡
⎣ 3 + r −3 −r

−3 + r 3 −r

r 0 −r

⎤
⎦ 1

2

3

.

The difference equation for node i at time step j is thus

(−r − r)Uij−1 + (0 − r)Ui+1j−1 + (−3)Ui−1j + (3 + r + r + 3)Uij

+ (−3 + r)Ui+1j = 0,

i.e.

(6 + 2r)Uij − (2rUij−1 + rUi+1j−1 + 3Ui−1j + (3 − r)Ui+1j) = 0.

Solution 5.7 In this case, r = 4
9 and the only unknowns are U22 and U32; thus

the difference equations are

62
9 Ui2 −

(
8
9Ui1 + 4

9Ui+11 + 3Ui2 + 23
9 Ui+12

)
= 0, i = 2, 3.
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Enforcing the initial and boundary conditions

U21 = 2
9 , U31 = 8

9 , U41 = 2, U12 = 1, U42 = 3

and solving the resulting pair of equations yields

U22 = 11
9 , U32 = 17

9 .

Solution 5.8 For the wave equation

∇2u =
1
c2

∂2u

∂t2
in D

with Dirichlet/Robin boundary conditions and initial conditions on u and ∂u/∂t,
the only difference occurring in the Galerkin formulation from that for Poisson’s
equation in Sections 5.1 and 5.2 is that the time derivative term becomes

∫ T

0

∫ ∫
D

1
c2

∂2ũ

∂t2
wi dx dy dt =

∫ ∫
D

1
c2

{
∂ũ

∂t
wi

∣∣∣∣
T

0

−
∫ T

0

∂ũ

∂t

∂wi

∂t
dt

}
dx dy

after integrating by parts. This then gives a contribution

∫ ∫
[e]

1
c2

{
Ne

i

∂Ne
j

∂t

∣∣∣∣
T

0

−
∫ T

0

∂Ne
i

∂t

∂Ne
j

∂t
dt

}
dx dy

to the element stiffness matrix.

Solution 5.9 In this case h = 2
3 , so that

C =
2
18

⎡
⎢⎢⎣

2 1 0 0
4 1 0

4 1
sym 2

⎤
⎥⎥⎦ , K =

3
2

⎡
⎢⎢⎣

1 −1 0 0
2 −1 0

2 −1
sym 1

⎤
⎥⎥⎦ .

Thus the difference equation given by eqn (5.33) with Δt = 1, after the conditions

U11 = 0, U21 = 2
9 , U31 = 8

9 , U41 = 2, U12 = 1, U42 = 3

are enforced, becomes

[
2 8 2 0
0 2 8 2

]⎡
⎢⎢⎣

1
U22

U32

3

⎤
⎥⎥⎦ +

[ −29 46 −29 0
0 −29 46 −29

]⎡
⎢⎢⎢⎣

0
2
9

8
9

2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

which yields U22 = 11
9 , U32 = 17

9 .
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Solution 5.10 Equation (5.34) gives an approximation to the system (5.32) for
values of t between j Δt and (j + 1) Δt. Similarly, for values of t between (j −
1) Δt and j Δt,

(5.63)
1

Δt
C[Uj − Uj−1] + K[τUj + (1 − τ)Uj−1] = τFj + (1 − τ)Fj−1.

Using Galerkin’s method to minimize the residual for eqns (5.34) and (5.63), the
weighting function is

W (t) =

{
τ (j − 1) Δt ≤ t ≤ jΔt,

1 − τ, j Δt ≤ t ≤ (j + 1)Δt,

which gives[
1

Δt
C +

2
3
K

]
Uj +

[
− 1

Δt
C +

1
3
K

]
Uj−1 − 2

3
Fj − 1

3
Fj−1

+
[

1
Δt

C +
1
3
K

]
Uj+1+

[
− 1

Δt
C +

2
3
K

]
Uj − 1

3
Fj+1 − 2

3
Fj = 0.

Collecting the terms together gives the required result.

Solution 5.11 The finite element approximation is

ũ =
∑

e

ũe,

where

ũe = Ne(x, y)Ue(t).

Using Galerkin’s method, Green’s theorem is used to reduce the order of the
space derivatives occurring in the weighted residual equations. Then, just as in
Example 5.4, the system of equations becomes

MÜ + CU̇ + KU = F,

where the stiffness and force matrices have their usual form. The element
damping and mass matrices are given by

ce =
∫ ∫

[e]

μNeT

Ne dx dy

and

me =
∫ ∫

[e]

1
c2

NeT

Ne dx dy.



Further topics in the finite element method 211

Solution 5.12 (Zienkiewicz and Taylor 2000a)

U̇i =
1

Δt

[
τ − 1

2 − 2τ τ + 1
2

]
[Uij−1 Uij Uij+1]T

and

Üi =
1

Δt2
[1 − 2 1][Uij−1 Uij Uij+1]T .

Thus the weighted residual form of eqn (5.62) becomes∫ 1

−1

{
1

Δt2
M[Uj−1 − 2Uj + Uj+1]

+
1

Δt
C

[(
τ − 1

2

)
Uj−1 − 2τUj +

(
τ +

1
2

)
Uj+1

]

+ K
[
1
2 (τ2 − τ)Uj−1 + (1 − τ2)Uj + 1

2 (τ2 + τ)Uj+1

]
− [

1
2 (τ2 − τ)Fj−1 + (1 − τ2)Fj + 1

2 (τ2 + τ)Fj+1

]}
W dτ = 0.

Thus it follows that

[M + γ Δt C + β Δt2 K]Uj+1(5.64)

+
[−2M + (1 − 2γ) Δt C +

(
1
2 − 2β + γ

)
Δt2 K

]
Uj

+
[
M + (γ − 1) Δt C +

(
1
2 + β − γ

)
Δt2 K

]
Uj−1

= β Δt2 Fj+1 +
(

1
2 − 2β + γ

)
Δt2 Fj +

(
1
2 + β − γ

)
Δt2 Fj−1.

Solution 5.13 Using the results of the problem in Example 5.5, the overall
stiffness and force matrices are

K = 3
2

⎡
⎢⎢⎣

U1 + U2 −U1 − U2 0 0
U1 + 2U2 + U3 −U2 − U3 0

U2 + 2U3 + U4 −U3 − U4

sym U3 + U4

⎤
⎥⎥⎦ ,

F = 1
6 [1 2 2 1]T .

Since U1 = 0 and U4 = 1, the finite element equations are thus

− 3
2 (1 + U2) + 3

2 (1 + 2U2 + U3)U2 − 3
2 (U2 + U3)U3 = −1

3
,

− 3
2 (U2 + U3) + 3

2 (U2 + 2U3)U3 = −1
3
.

Solving these yields U2
2 = 4

9 , U2
3 = 1

9 .
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Just as in Example 5.5, the positive roots are the admissible ones, so that
U2 = 2

3 , U3 = 1
3 .

Solution 5.14 Following the method of the problem in Example 5.5 and using
the notation of Fig. 3.7,

ke(u) =
1
2h

[
1 −1

−1 1

] ∫ 1

−1

eu dξ,

so that

ke(UA, UB) =
1
2h

[
1 −1

−1 1

] ∫ 1

−1

exp
{

1
2
(1 − ξ)UA +

1
2
(1 + ξ)UB

}
dξ

=
eUB − eUA

h(UB − UA)

[
1 −1

−1 1

]
.

fe may be obtained from the integral formula given in Solution 3.5. Putting
h = 1

2 and remembering to change the sign by virtue of the definition of the
differential operator involved, it follows that

fe = −exm [0.23165 0.27358]T .

Thus, assembling the equation for the one unknown U2 and enforcing the essential
boundary conditions U1 = 0, U3 = 1,

[
eU2 − 1

U2
+

e − eU2

1 − U2

]
U2 − e − eU2

1 − U2
= −0.42084.

This non-linear equation may be solved by the Newton–Raphson method to give
the solution U2 = 0.5.

Solution 5.15 Using the results of Exercise 5.13, the non-linear algebraic equa-
tions are

6U2
2 − 3U2

3 − 7
3 = 0,

−3U2
2 + 6U2

3 + 2
3 = 0.

Thus

G =

[
12U2 −6U3

−6U2 12U3

]
.

Taking a first approximation U0 = [0.7 0.3]T , it follows from eqn (5.41) that
the second approximation is
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U1 =
[

0.7
0.3

]
−

[
0.1587 0.0794
0.1852 0.3704

] [
0.3367

−0.2633

]

=
[

0.667
0.335

]
.

Similarly,

U2 =
[

0.667
0.335

]
−

[
0.1666 0.0833
0.1658 0.3317

] [−0.674
5.350

]
× 10−3

=
[

0.667
0.333

]
.

Solution 5.16 Since in this case F is independent of U, the matrix J of eqn
(5.40) is identical with the matrix G of eqn (5.39). Thus, with starting values

U0 = [0.7 0.3]T , F0 = [2.67 − 0.93]T ,

it follows that

ΔF0 = [−0.1683 0.1367]T ,

since two equal increments are to be used. Equation (5.42) then gives

U1 =
[

0.7
0.3

]
−

[
0.1587 0.0794
0.1852 0.3704

] [−0.1683
0.1367

]

=
[

0.6837
0.3195

]
.

Similarly,

U2 =
[

0.6837
0.3195

]
−

[
0.1625 0.0813
0.1739 0.3478

] [−0.1683
0.1367

]

=
[

0.667
0.338

]
.

Solution 5.17 (Zienkiewicz, Lyness et al. 1977) The overall stiffness matrix is
given by eqn (5.36) as

K(U) =
∑

e

∫ ∫
[e]

μαT α dx dy,
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with μ = μ(H) and H = −grad u. In this case the matrix J is given by

Jij =
∂

∂Uj

(
n∑

p=1

KipUp

)

= Kij +
n∑

p=1

∂Kip

∂Uj
Up.

Thus J may be assembled from the following element matrices:

je = ke +
∑
j∈[e]

[
∂

∂Uj
(ke)

]
Ue

= ke + k̂e.

Now

∂

∂Uj
(ke) =

∫ ∫
[e]

∂μ

∂Uj
αT α dx dy

and

∂μ

∂Uj
=

dμ

dH

∂H

∂Uj

=
dμ

dH

1
H

(
Hx

∂Hx

∂Uj
+ Hy

∂Hy

∂Uj

)

=
dμ

dH

1
H

HT

[
∂

∂Uj
(H)

]

=
dμ

dH

1
H

HT [−α1j − α2j ]
T

.

Thus

k̂e =
∫ ∫

[e]

dμ

dH
HT

∑
j∈[e]

[−α1j − α2j ]T [Uj ]αT α dx dy

=
∫ ∫

[e]

dμ

dH
HT HαT α dx dy

=
∫ ∫

[e]

dμ

dH
H2αT α dx dy.

Solution 5.18 Interpolating Ui(t) in 0 ≤ t ≤ Δt by

Ui(t) = fi + ai Δt τ, 0 ≤ τ ≤ 1,
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substituting in the functional (2.76) and performing the space integrations as in
Example 5.6,

Ie =
∫ 1

0

{
[Ui−1(1 − τ) Ui(1 − τ)]

k

h

[
1 −1

−1 1

] [
Ui−1(τ)
Ui(τ)

]

+ [Ui−1(1 − τ) Ui(1 − τ)]
h

6

[
2 1
1 2

] [
ai−1

ai

]}
Δt dτ

− [fi−1 fi]
h

6

[
2 1
1 2

] [
Ui−1(1)
Ui(1)

]
.

Thus

∂Ie

∂ai
=

h Δt

6
(−1 − 4μ)fi−1 +

h Δt

3
(2μ − 1)fi

+
h Δt

6
(−2μ + 1)hi−1 +

h Δt

3
(1 + μ)hi.

Assembling the overall equations just as in Example 5.6 gives the stated differ-
ence formula.

Solution 5.19 Taking the Laplace transform gives the two-point boundary-value
problem

−d2ū

dx2
+ λ2ū = π sin πx,

ū(0;λ) = ū(1;λ) = 0.

Using two equal linear elements, the overall stiffness and mass matrices are

K = 2

⎡
⎣ 1 −1 0
−1 2 −1

0 −1 1

⎤
⎦ , C =

1
12

⎡
⎣2 1 0

1 4 1
0 1 2

⎤
⎦ .

The element force matrices are

f1 =
∫ 1/2

0

π sin πx

[
1
2
− x x

]T

dx =
[
1
2
− 1

π

1
π

]T

,

f2 =
∫ 1

1/2

π sin πx

[
1 − x x − 1

2

]T

dx =
[

1
π

1
2
− 1

π

]T

.

Thus the overall equation for the only unknown Ū2 is, enforcing the boundary
conditions Ū1 = Ū3 = 0,

4Ū2 +
λ2

12
(4Ū2) =

2
π

.
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Thus

Ū2 =
6

π(12 + λ2)
;

therefore U2(t) = 0.551 sin(3.46t).

Solution 5.20 Just as in Example 5.7, the Laplace transform of U2(t) is given
by

Ū2 =
1
λ

+
1
λ2

− 1
8(3 + λ)

.

A spreadsheet inversion of Ū2 is shown in Figure 5.5.
From Figure 5.5, we see that Stehfest’s method yields the value U2(1) =

1.994. This agrees to three decimal places with the exact inversion given by eqn
(5.53).

Solution 5.21 The overall system of equations for the Laplace transform is

1
h

⎡
⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦

⎡
⎣ Ū2

Ū3

Ū4

⎤
⎦ +

λh

6

⎡
⎣4 1 0

1 4 1
0 1 4

⎤
⎦

⎡
⎣ Ū2

Ū3

Ū4

⎤
⎦ =

1
4

⎡
⎣2

2
2

⎤
⎦ ,

which yields, with h = 1
4 ,

(
8 +

λ

6

)
Ū2 −

(
4 − λ

24

)
Ū3 =

1
2
,

−
(

4 − λ

24

)
Ū2 +

(
8 +

λ

6

)
Ū3 −

(
4 − λ

24

)
Ū4 =

1
2
,

−
(

4 − λ

24

)
Ū3 +

(
8 +

λ

6

)
Ū4 =

1
2
.

Fig. 5.5 Spreadsheet for Solution 5.20.
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Fig. 5.6 Spreadsheet solution for the problem in Exercise 5.21.

Since this system is diagonally dominant, we expect a Jacobi iteration to converge
(Jennings and McKeown 1992):

Ū
(n+1)
2 =

1
8 + λ/6

(
1
2

+
(

4 − λ

24

)
Ū

(n)
3

)
,

Ū
(n+1)
3 =

1
8 + λ/6

(
1
2

+
(

4 − λ

24

)
Ū

(n)
2 −

(
4 − λ

24

)
Ū

(n)
4

)
,

Ū
(n+1)
4 =

1
8 + λ/6

(
1
2

+
(

4 − λ

24

)
Ū

(n)
3

)
.

A spreadsheet solution at t = 0.1 is shown in Fig. 5.6. Here we have used
the Microsoft Excel spreadsheet and employed the Solver facility to implement
the iterative solution to obtain Ū2(λj), Ū3(λj), Ū4(λj), j = 1, 2, . . . , M . Stehfest
inversion yields

U2 = 0.671 = U4, U3 = 0.949.

These results agree with the exact values to three decimal places; see Exam-
ple 5.10.



6 Convergence of the finite
element method

In this chapter, an introduction to the mathematical basis of the finite element
method is presented. It is by no means a detailed discussion, since the concepts
required are beyond the scope of this text. However, the chapter gives a flavour of
the way in which the ideas may be developed, and the interested reader may take
the subject matter further by consulting the references. In particular, the text
by Brenner and Scott (1994) gives a good picture of the mathematical theory
underpinning the finite element method.

6.1 A one-dimensional example

Consider the following positive definite, self-adjoint, two-point boundary-value
problem:

(6.1) − d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x), a < x < b,

subject to the Dirichlet boundary conditions

(6.2) u(a) = α, u(b) = β.

In eqn (6.1), the functions p and q satisfy

(6.3) p(x) > 0 and q(x) ≥ 0 for a < x < b.

It follows from the one-dimensional form of the functional (2.44) of Section 2.6
that the solution u0 of eqn (6.1) subject to eqn (6.2) minimizes

(6.4) I[u] =
∫ b

a

{
p(u′)2 + qu2 − 2uf

}
dx.

It is convenient at this stage to introduce the following inner product notations:

(u, v) =
∫ b

a

uv dx,(6.5)

A(u, v) =
∫ b

a

(pu′v′ + quv) dx.(6.6)



Convergence of the finite element method 219

By analogy with the functional of eqn (2.27) in Section 2.4 and the physical
interpretation of the terms, 1

2A(u, u) is often called the energy of the function
u. Consequently, A(u, u) is called the energy norm of the function u. If the error
e in a sequence of approximations is such that A(e, e) → 0, then the method
used to obtain the approximations is said to converge in energy, or in the energy
norm. The norm of the function u is defined by

(6.7) ||u||p =
{

(u, u) + (u′, u′) + . . . + (u(p), u(p))
}1/2

.

An important property of a properly posed problem is that the solution depends
continuously on the data. This implies that there exist positive constants C and
M such that

(6.8) ||u0||2 ≤ C ||f ||0 < M.

In Chapter 2, nothing was said about the class of functions which are admissible
in the functional (6.4), except that they must satisfy the essential boundary
conditions. In fact, the required class is known as the Hilbert space of functions
defined on [a, b] which have a finite norm ||u||1 and which satisfy the essential
boundary conditions. Using the notation of Strang and Fix (1973), we denote
this space by H1

E ; the superscript shows the order of derivatives which have
finite norm and the subscript shows that admissible functions must satisfy the
essential boundary conditions.

In the finite element method, an approximate solution is sought amongst
functions which belong to a closed subspace, Sh, of H1

E ; for example, the
approximating function considered in Section 3.5 is a piecewise linear function.
The questions that then arise are ‘does the method converge as the mesh size
decreases, i.e. as h → 0?’ and ‘can error bounds be obtained in terms of h?’
Theorem 6.4 answers these questions; but first, three lemmas are required.

Lemma 6.1 Suppose that the minimum of I[v] as v varies over Sh occurs at the
function uh; then A(uh, v) = (f, v) for any v ∈ Sh. In particular, if Sh = H1

E,
then A(u0, v) = (f, v) for any v ∈ H1

E.

Proof Since uh minimizes I[v], it follows that for any ε and v ∈ Sh,

I[uh] ≤ I
[
uh + ε

]
= I[uh] + 2ε

{
A(uh, v) − (f, v)

}
+ε2A(v, v) (see Exercise 6.1).

Thus

2ε
{
A(uh, v) − (f, v)

}
+ ε2A(v, v) ≥ 0.



220 The Finite Element Method

Since this result must hold for arbitrary ε, it follows that

(6.9) A(uh, v) = (f, v), v ∈ Sh.

In the special case that Sh is the whole space H1
E , uh = u0, and thus

(6.10) A(u0, v) = (f, v), v ∈ H1
E .

�

Lemma 6.2 A(u0 − uh, v) = 0 for all v ∈ Sh.

Proof Since eqn (6.10) holds for all v ∈ H1
E , it certainly holds for v ∈ Sh, i.e.

(6.11) A(u0, v) = (f, v), v ∈ Sh.

Subtracting eqn (6.9) from eqn (6.11) yields the result. �

Lemma 6.3 The minimum of I[v] and the minimum of A(u0 − v, u0 − v) for
v ∈ Sh are achieved by the same function uh.

Proof

A(u0 − uh − v, u0 − uh − v) = A(u0 − uh, u0 − uh) − 2A(u0 − uh, v) + A(v, v);

thus, by virtue of Lemma 6.2, it follows that

A(u0 − uh − v, u0 − uh − v) ≥ A(u0 − uh, u0 − uh),

equality occurring only if A(v, v) = 0, i.e. if v = 0. Thus uh is the unique function
which minimizes A(u0 − v, u0 − v), and the result is established. �

Theorem 6.4 The error e = u0 − uh in the finite element method using linear
elements satisfies

(6.12) A(e, e) ≤ Kh2 ||f ||20
and

(6.13) ||e||0 ≤ K1h
2 ||f ||20.

Proof Consider the function ũI which agrees exactly with u0 at the nodes and
interpolates it linearly between them. This function ũI is of course unknown,
since u0 itself is unknown; however, it is a more convenient function to deal
with. Notice first that any results established for ũI will also hold for uh, since,
by virtue of Lemma 6.3, uh is at least as good an approximation as ũI , in the
sense that uh minimizes the energy norm.
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1

(j – 1)h (j + 1)h

x

jh

wj(x)

Fig. 6.1 The nodal function nj(x) associated with node j for linear elements.

Consider the case of linear interpolation for u0, so that

ũI =
n∑

j=1

wjUj ,

where wj is the nodal function associated with node j (cf. eqn (3.35)); see Fig. 6.1.
It may be shown (see Exercise 6.2) that

A(u0 − ũI , u0 − ũI) ≤
(

h2

π2
P +

h4

π4
Q

)
||u′′

0 | |20,

where P = max p(x) and Q = max q(x), a ≤ x ≤ b. Thus there exists a constant
C1 such that

A(u0 − ũI , u0 − ũI) ≤ C1h
2 ||u′′

0 | |20.
Now

(6.14)

A(e, e) ≤ A(u0 − ũI , u0 − ũI) using Lemma 6.3

≤ C1h
2 ||u′′

0 | |20
≤ C1h

2C||f ||20 using eqn (6.8)

= Kh2||f ||20.
Finally, then, as h → 0, A(e, e) → 0, and the finite element method converges in
the energy norm.

To obtain the result (6.13), suppose that in eqn (6.1), f = u0 − uh = e, and
that w is the corresponding solution.

Then, using eqn (6.10) with v = e,

A(w, e) = (e, e) = ||e||20.
From Lemma 6.2, A(v, e) = 0 for all v ∈ Sh; thus it follows that A(w − v, e) =
||e||20. Now eqn (6.14) gives

{A(e, e)}1/2 ≤ C2h ‖u′′
0‖0 .
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and

{A(w − v, w − v)}1/2 ≤ C2h ||w′′||0.

The Schwartz inequality states that

|A(w − v, e)| ≤ {A(w − v, w − v)A(e, e)}1/2 ;

thus

||e||20 ≤ C2
2h2 ‖u′′

0‖0 ||w′′||0
≤ C2

2h2 ‖u′′
0‖0 C3 ||e||0,

using an inequality of the form (6.8) for w.
Finally, then, it follows, using eqn (6.8), that

||e||0 ≤ K1h
2 ||f ||0. �

So far, the convergence proofs have assumed that the actual function f is
used in the finite element calculations. Often an interpolate fI is used, and thus
the corresponding finite element solution ũh differs from uh.

Theorem 6.5 The error E = uh − ũh due to the replacement of f by its inter-
polate fI satisfies

A(E,E) ≤ K2h
4 ||f ′′||20.

Proof The exact solution u0 − ũ corresponding to the data f − fI is bounded
by

||u0 − ũ||2 ≤ C ||f − fI ||0.

Now, we can show in a manner similar to that in Solution 6.2 that

||f − fI ||0 ≤ h2

π2
||f ′′||0.

Thus

||u0 − ũ||2 ≤ Ch2

π2
||f ′′||20.

Also,

A(u0 − ũ, u0 − ũ) ≤ C3 ||u0 − ũ||20
≤ K2h

4||f ′′||20.



Convergence of the finite element method 223

Finally,

A(E,E) = A(u0 − ũ, u0 − ũ)

−A
(
[u0 − ũ] − [uh − ũh], [u0 − ũ] − [uh − ũh]

)
≤ A(u0 − ũ, u0 − ũ)

≤ K2h
4 ||f ′′||20.

Thus it follows that the error due to the linear interpolation of f is smaller,
in the energy sense, than the inherent error in the method based on linear
elements. �

The results in this section have been deduced using arguments based on
variational methods; the reason for this is that the same ideas may be used
for problems in two or three dimensions. A finite difference approach may
also be used for the one-dimensional case, but it is not easy to extend it to
higher dimensions. However, it is interesting to use this approach here because it
brings out a remarkable property of the finite element solution to the two-point
boundary-value problem.

Consider, for simplicity, the equation

(6.15) −u′′ = f, a < x < b,

subject to the boundary conditions

(6.16) u(a) = α, u(b) = β.

The corresponding functional is

(6.17) I[u] =
∫ b

a

{
(u′)2 − 2uf

}
dx,

and all trial functions must satisfy the essential boundary conditions (6.16).
Only Dirichlet conditions are considered here; similar reasoning follows if mixed
conditions are given.

Using the usual finite element approximation in terms of nodal functions

ũ =
n∑

j=1

wj(x)Uj ,

where wj(x) is as shown in Fig. 6.1, the error is given by e = u0 − ũ. From
Lemma 6.2, since ũ is chosen to minimize eqn (6.17),

∫ b

a

d

dx
(u0 − ũ)

dwj

dx
dx = 0, j = 2, . . . , n − 1,
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i.e. ∫ b

a

de

dx

dwj

dx
dx = 0, j = 2, . . . , n − 1.

Since wj ≡ 0 for x ≤ (j − 1)h or x ≥ (j + 1)h, it follows that

∫ jh

(j−1)h

de

dx

(
+

1
h

)
dx +

∫ (j+1)h

jh

de

dx

(
− 1

h

)
dx = 0, j = 2, . . . , n − 1.

Therefore

1
h

(−ej−1 + 2ej − ej+1) = 0, j = 2, . . . , n − 1.

Now e0 = en = 0; thus it follows that e1 = e2 = . . . = en−1 = 0, i.e. the finite
element solution ũ coincides with the exact solution u0 at the nodes. This
phenomenon is easily seen in Example 3.1 (see Fig. 3.9), and is referred to as
superconvergence in the literature (Douglas and Dupont 1974).

6.2 Two-dimensional problems involving Poisson’s equation

For two-dimensional elements, error bounds are found in terms of the element
diameters; for example, the diameter of a triangle is the length of the longest
side and the diameter of a quadrilateral is the length of the longer diagonal.

Consider a discretization of some two-dimensional region D by means of
triangles and suppose that h is the maximum diameter for these triangles. Error
analysis in this case is far more complicated than for the two-point boundary-
value problem of Section 6.1, and only a statement of the error bounds is given
here; the interested reader is referred to the books by Strang and Fix (1973) and
Wait and Mitchell (1985) for more details and further references.

The norm used here is given by

||u||p =

[∫ ∫
D

{
u2+

(
∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂2u

∂x2

)2

+ . . . +
(

∂pu

∂yp

)2
}

dx dy

]1/2

.

(6.18)

The error e = u0 − ũ may be shown to satisfy an inequality of the form

(6.19) ||e||1 ≤ Ch2 max (|uxx|, |uxy|, |uyy|) ,

i.e. just as in the one-dimensional case, the norm of the error behaves like h2 as
h → 0.
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Table 6.1 The solution, as the mesh is subdivided, of
Poisson’s equation −∇2u = −2ex+y in the region of the
problem of Exercise 3.15; the exact solution is ex+y

No. of elements h Finite element Error ×102

solution at
( 1

2 , 1
2

)
4 0.7071 2.6802 −3.81
16 0.3536 2.7079 −1.04
64 0.1768 2.7156 −0.27

Although the bounds on the error show that the method converges as
h → 0, the manner in which convergence occurs is not apparent. Melosh (1963)
gave the following sufficient condition under which the method gives monotonic
convergence:

If each subdivision of the finite element mesh contains the previous one as a subset
then the convergence will be monotonic.

Table 6.1 shows such convergence for Poisson’s equation in a square, the
mesh being obtained by successively halving the dimensions of the triangles in
Fig. 3.39.

In eqn (6.19) it is assumed that the smallest angle α of the triangle is
bounded away from zero, i.e. the aspect ratio remains finite. In practice, it is
usually desirable that the aspect ratio be chosen to be as near to unity as possible,
unless it is known a priori that the solution possesses high gradients in some
direction.

A similar result holds for bilinear rectangular elements, i.e. the norm of the
error behaves like h2 as h → 0.

The remarks concerning monotonicity of convergence and the desirability
of using elements with unit aspect ratio also hold for higher-order elements.
Table 6.2 shows the monotonic convergence and Table 6.3 shows the effect of
aspect ratio for the solution of Poisson’s equation using eight-node rectangular
elements.

A further point of interest here concerns the approximation of an infinite
boundary. The convergence proofs referred to in this section are valid only for
finite regions. In practice, the mathematical model of a physical problem may
well include an infinite region, and the finite element method has often been used
very successfully in such cases. The boundary at infinity may be replaced by a
boundary at a relatively large finite distance from the region of interest. This
technique has been very popular; however, the development of infinite elements
(Bettess 1977, 1992) allows the complete region to be modelled. Finally, an
alternative procedure involves a coupling of the finite element method for the
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Table 6.2 The solution at (0.5, 1) of Laplace’s equation
in the square with vertices at (0, 0), (2, 0), (2, 2),
(0, 2). The boundary conditions are u(x, 2) =
sin(πx/2), u = 0 on the remaining boundaries. The
exact solution is sin(πx/2) sinh(πy/2)/ sinh π

No. of elements h Finite element Error ×102

solution

8 0.7071 0.14120 2.99
32 0.3536 0.14093 0.24
128 0.1768 0.14091 0.02

Table 6.3 Effect of aspect ratio on the solution at (0.5, 1)
to the problem in Table 6.2

Aspect ratio 16 4 1

Finite element solution 0.1584 0.1462 0.1435

Error 0.0174 0.0053 0.0026

local region of interest with the boundary integral equation method for the far
field (Zienkiewicz, Kelly et al. 1977). In fact, the boundary integral equation
method has been couched in finite element terms for potential problems by
Brebbia and Dominguez (1977), who used a weighted residual approach and
referred to it as the boundary element method. We shall give an introduction to
the boundary element method in Chapter 8.

6.3 Isoparametric elements: numerical integration

The isoparametric concept was introduced in Section 4.6. There, it was noted
that the forms of the integrands obtained are usually too complicated to be
evaluated analytically and are invariably obtained numerically using Gauss
quadrature. Consequently, another source of error is introduced. The effect
of numerical integration is considered in this section. Typically, for Poisson’s
equation, the integrals involved in computing ke

ij are of the form of eqn (3.40),

∫ ∫
[e]

k(x, y)
(

∂Ne
i

∂x

∂Ne
j

∂x
+

∂Ne
i

∂y

∂Ne
j

∂y

)
dx dy.

This expression was obtained using Galerkin’s method and can be considered
to come from an expression of the form
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∫ ∫
[e]

k(x, y) grad ũe · grad Wdx dy,

where ũe is a trial function and W a weighting function. In the case where W is
a linear polynomial, the integral is of the form

(6.20)
∫ ∫

[e]

k(x, y)
(

c1
∂ũe

∂x
+ c2

∂ũe

∂y

)
dx dy.

Using the isoparametric transformation given by eqns (4.15) and (4.16), the first
term in eqn (6.20) becomes

(6.21) c1

∫ ∫
[e]

k(ξ, η)
(

∂ũe

∂ξ

∂ξ

∂x
+

∂ũe

∂η

∂η

∂x

)
|detJ| dξ dη.

Now the Jacobian matrix J is given by eqn (4.14), so that

(6.22)
[

∂ξ/∂x ∂η/∂x

∂ξ/∂y ∂η/∂y

]
= J−1 =

1
detJ

[
∂y/∂η −∂y/∂ξ

−∂x/∂η ∂x/∂ξ

]
.

Thus expression (6.21) is proportional to

(6.23)
∫ ∫

[e]

k(ξ, η)
(

∂ũe

∂ξ

∂y

∂η
− ∂ũe

∂η

∂y

∂ξ

)
dξ dη,

i.e. the rational functions in the integrand in eqn (6.21) have been replaced by
polynomials, and the method will certainly converge if this integral is computed
exactly.

It is interesting to note that this condition may be interpreted by saying
that it is necessary that the area of the element must be computed exactly
by the quadrature rule. This follows since the expression (∂ũe/∂ξ) (∂y/∂η) −
(∂ũe/∂η) (∂y/∂ξ) in the integrand has the same form as detJ and the area of
the element is given by

∫ ∫
[e]

|detJ| dξ dη. In the Gauss quadrature method,
integrals of the form

∫ ∫
[e]

F (ξ, η) dξ dη are evaluated as a sum
∑

g wgF (ξg, ηg),
where (ξg, ηg) is a sampling point inside the element and wg is an associated
weight. It is not the intention of this section to give a detailed derivation of the
Gauss quadrature method. However, for the interested reader who is not familiar
with the ideas, an introduction is provided in Exercises 6.3–6.7.

The question to be answered is ‘under what conditions can eqn (6.23) be
evaluated exactly?’ Strang and Fix (1973) showed that there are two parts to
the answer. Firstly, to ensure positive definiteness of the approximate functional,
there is a minimum number N of sampling points in the region. If the trial func-
tions are polynomials of degree p, then N ≥ p − 1 ensures that the quadrature
errors are of the same order as those due to the piecewise polynomial approx-
imation. Secondly, for convergence as the mesh size decreases, it is necessary
that N ≥ m, where m is the order of the highest derivative occurring in the
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energy functional. Thus, provided that a quadrature scheme is chosen for which
N ≥ max(p − 1,m), such a scheme will be suitable.

An important point regarding the use of isoparametric elements has not so
far been considered. This concerns the possible vanishing of detJ. It is clear from
eqn (6.22) that detJ must not vanish inside the element; this imposes restrictions
on the geometry of the chosen element.

Example 6.1 Consider the linear isoparametric quadrilateral introduced in
Example 4.4; see Fig. 4.10. The parent element is a conforming element in terms
of local coordinates (ξ, η) (see Section 3.7); consequently, it follows from the
remarks made in Section 4.6 that boundaries of adjacent distorted elements
coincide. Thus the only way in which the transformation may not be invertible
is if detJ = 0 somewhere in the parent element.

Using the results of Example 4.4,

detJ =
1
16

∣∣∣∣−x1 + x2 + x3 − x4 + Aη −y1 + y2 + y3 − y4 + Bη

−x1 − x2 + x3 + x4 + Aξ −y1 − y2 + y3 + y4 + Bξ

∣∣∣∣,
where A = x1 − x2 + x3 − x4, B = y1 − y2 + y3 − y4. Thus detJ is a linear func-
tion of ξ and η, and thus it follows that if detJ has the same sign at all four
nodes of the parent element then it cannot vanish inside it.

Now, at node 1,

detJ = 1
4 {(x2 − x1)(y4 − y1) − (y2 − y1)(x4 − x1)}

= 1
4 ab sin θ,

where a and b are the lengths of sides 1,4 and 1,2, respectively, and θ is the
interior angle at node 1. The notation here is that shown in Fig. 4.10(b).

Similar results hold for nodes 2, 3 and 4. Thus it follows that detJ will be of
the same sign at all nodes if and only if all interior angles are less than π, i.e. the
quadrilateral is convex. For higher-order isoparametric elements, the condition
that detJ must not vanish inside the element places restrictions on the possible
position of the nodes on the curved side, see Exercise 6.9.

6.4 Non-conforming elements: the patch test

Throughout the text, it has been assumed that the trial functions are such
that continuity across interelement boundaries is preserved, i.e. the elements
considered have been conforming elements. In Section 3.7, a rectangular element
was developed; this element is non-conforming in terms of global Cartesian
coordinates if the element sides are not parallel to the coordinate axes. In
practice, certain non-conforming elements are used, and sometimes these work
very well indeed, although the convergence proofs outlined in this chapter do not
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hold for such elements. The following test, called the patch test, may be used to
check that a certain non-conforming element will yield convergence.

Suppose that u0 is a known solution to Lu = f and that round the perimeter
of any arbitrary patch of elements, values of u are chosen to be equal to u0. If
the approximate solution U to this problem, inside the patch, is identical with
u0 there, then the test is satisfied and the element will yield convergence.

The patch test for the finite element method may be considered to be
analogous to the test of consistency for the finite difference method (Smith 1985).

Example 6.2 Consider the solution of Laplace’s equation in the region shown
in Fig. 4.15, using four equal bilinear rectangular elements. Suppose that a test
solution x − y + 1 is considered within the patch. Then the corresponding nodal
values are

U1 = U2 = U3 = 1, U4 = U6 = 2, U7 = U8 = U9 = 3.

Thus the overall equation for the internal node 5 is, using the results of Exer-
cise 3.13,

−2U1 − 2U2 − 2U3 − 2U4 + 16U5 − 2U6 − 2U7 − 2U8 − 2U9 = 0,

which yields U5 = 2.
Substituting these values into the element approximation for ũe yields

ũ1 =
1
4

[(1 − ξ)(1 − η) (1 + ξ)(1 − η) (1 + ξ)(1 + η) (1 − ξ)(1 + η)] [1 2 2 1]T ,

where (ξ, η) are the usual local coordinates. Thus

ũ1 = 1
2 (3 + ξ)

= x − y + 1.

Similarly, ũ2 = ũ3 = ũ4 = x − y + 1; hence the element passes the patch test.

6.5 Comparison with the finite difference method: stability

Part of the procedure in the finite element method is to reduce a partial
differential equation to a set of algebraic equations for unknown nodal variables.
The reader with a knowledge of finite differences will have recognized already
some of the usual finite difference replacements for particular equations; for
example, in Exercise 3.18, the use of linear triangles led to the usual five-point
formula for the torsion equation,

(6.24)
1
h2

(U2 + U3 + U4 + U5 − 4U1) = −2;
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5 1

4

2

3

Fig. 6.2 Nodal arrangement on a square mesh of side h.

the notation is defined in Fig. 6.2. However, a different orientation of the elements
yielded the same overall stiffness matrix but with a different load vector, giving

(6.25)
1
h2

(U2 + U3 + U4 + U5 − 4U1) = − 8
3 .

Consider now Poisson’s equation with a general non-homogeneous term
f(x, y). The finite difference replacement of f(x, y) at (xi, yi) is simply
fi = f(xi, yi), which gives

(6.26)
1
h2

(U2 + U3 + U4 + U5 − 4U1) = −f1,

i.e. the forces are lumped at the nodes. In the finite element method, however,
consistent forces are used, so that for the triangular element of Fig. 3.24, with
f interpolated linearly throughout the element, the result of Exercise 3.11 gives
the element force vector as

h2

24
[2f1 + f2 + f3 f1 + 2f2 + f3 f1 + f2 + 2f3]

T
.

Thus, with the orientation shown in Fig. 3.31(a), the difference equation given
by the finite element method is

1
h2

(U2 + U3 + U4 + U5 − 4U1) = − 1
12 (6f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8).

It is interesting here to illustrate the relationship between the two methods,
showing why they yield the same overall stiffness matrix for Poisson’s equation.
Equation (2.38) gives the functional for −∇2u = f as

(6.27) I[u] =
∫ ∫

D

{(
∂u

∂x

)2

+
(

∂u

∂y

)2

− 2uf

}
dx dy.

For a triangulation based on a square mesh parallel to the coordinate axes,
each triangle has one or two positions relative to the axes; see Fig. 6.3. The
finite element approximation yields values for ∂ũe/∂x and ∂ũe/∂y, which may
be substituted in eqn (6.27); these values are given in Exercise 6.10. Substituting
and performing the integration yields
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2
j

j + 1

j – 1

i – 1 i + 1i

1

Fig. 6.3 Nodal numbering for a square mesh, showing triangular elements of types
1 and 2.

Ie = 1
2h

{(
Ui+1j − Uij

h

)2

+
(

Uij+1 − Uij

h

)2
}

+ linear terms in Uij .

Now the only terms in I containing Uij are those due to the sum over the six
elements surrounding node i, j. Performing the sum and setting ∂I/∂Uij = 0
yields, after a little algebra,

(Ui+1j − 2Uij + Ui−1j)/h2 + (Uij+1 − 2Uij + Uij−1)/h2 = constant.

The left-hand side is readily seen to be the central difference approximation
to the Laplacian operator (Smith 1985), and the finite element method repro-
duces the well-known finite difference approach. Why then use finite elements at
all? So far, only the replacement of the governing partial differential equation has
been considered; no attention has been paid to the boundary conditions, and it is
here where the methods differ and where the finite element method is particularly
advantageous. A finite element mesh can be made to fit a given curved region
arbitrarily closely, with its nodes actually on the boundary. However, in general,
it requires many more nodes to fit a finite difference mesh with the same accuracy,
and for this reason the finite difference mesh is often chosen in such a way
that the nodes do not actually lie on the boundary at all. Difference operators
with unequal arms are then used to approximate the given boundary conditions.
Unfortunately, the accuracy is reduced and the procedure can be very clumsy
from a programming point of view. Thus, in the finite difference method, the
application of the boundary conditions may be a very complicated process. In
the finite element method, however, the boundary conditions cause no problems.
Dirichlet conditions are enforced without difficulty, and natural conditions are
accommodated by using a suitable variational or weighted residual approach.

Another difficulty associated with the finite difference approach concerns
the effect of a mixed boundary condition on the system of equations. Suppose
that nodes 2, 5, 8 in Fig. 3.31 are on the boundary and that, for simplicity,
a homogeneous Neumann boundary condition holds there. Then the left-hand
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side of the finite difference expression about node 5, U2 + U4 + U6 + U8 − 4U5,
becomes, approximating ∂u/∂y = 0 by (U4 − U6)/2h = 0, U2 + 2U6 + U8 − 4U5.
Thus, in the overall stiffness matrix, K56 = 2. Now, from the difference equation
for node 6, it is seen that K65 = 1. Consequently, K56 
= K65, i.e. in the finite
difference method the overall system of equations is not necessarily symmetric.
This of course is not the case in the finite element method, where, for elliptic
problems, the stiffness matrix is always symmetric.

The equivalence at interior points of the overall equations is well known and
it is often said that one method is a special case of the other. The decision to
use finite elements or finite differences is in some ways a matter of individual
preference and depends on the problem under consideration. Each method has
advantages and disadvantages; it is probably best to have both methods available
and to utilize the best of each whenever possible. Finite element methods are par-
ticularly useful for describing boundary-value problems, while finite differences
are often used for time-dependent terms, see Section 5.3.

One of the difficulties associated with time-dependent problems is that of
the stability of the numerical scheme. A scheme is said to be stable if local errors
remain bounded as the method proceeds from one time step to the next. There
is a great deal of literature on the stability of finite difference schemes (Smith
1985, Lambert 2000), and the ideas presented there may be utilized for problems
set up by the finite element method. To illustrate these ideas, one example will
be considered here.

Example 6.3 Equation (5.32),

(6.28) CU̇ + KU = F,

gives a system of ordinary differential equations which occurs when a finite
element procedure in space is used to solve the heat equation. A weighted residual
method in time then yields eqn (5.35),

(6.29)
[

1
Δt

C + rK

]
Uj+1 +

[
− 1

Δt
C + (1 − r)K

]
Uj = rFj+1 + (1 − r)Fj ,

where the well-known finite difference replacements are obtained by using suit-
able values of r.

As it stands, eqn (6.29) is not particulary susceptible to stability analysis.
A change of variable is performed so that the equations (6.28) are uncoupled.
Suppose that the time variation is given by

U = Ve−ωt;

then the homogeneous form of eqn (6.28) yields the eigenvalue problem

(6.30) [K − ωC]V = 0,
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with eigenvalues ωi and corresponding eigenvectors Vi. Since K and C are
positive definite, the eigenvalues are real and positive. Moreover, since K and
C are symmetric, the eigenfunctions corresponding to distinct eigenvalues are
orthogonal (Wilkinson 1999) in the sense that

VT
i KVj = VT

i CVj = 0, i 
= j.

Also,

VT
i KVi = ki, VT

i CVi = ci

with

(6.31) ωi = ki/ci.

Suppose now that the solution is written as a linear combination of these modes,

U =
∑

j

αj(t)Vj ;

then substituting in eqn (6.28) and pre-multiplying by VT
i gives

(6.32) ciα̇i = kiαi = fi,

where

fi = vT
i F.

Equation (6.32) represents a set of uncoupled differential equations for the
unknowns αi, and it is this set which will be used rather than eqn (6.28). Starting
with eqn (6.32) and applying the weighted residual process in time, just as in
Section 5.3, the following difference equation is obtained (cf. eqn (6.29)):

(ci/Δt + rki)(αi)j+1 + (−ci/Δt + (1 − r)ki)(αi)j = r(fi)j+1 + (1 − r)(fi)j .

(6.33)

For the purposes of stability analysis, consider the homogeneous form of
eqn (6.33), i.e. fi ≡ 0, and suppose that

(6.34) (αi)j+1 = λ(αi)j ;

then

(6.35) λ(ci/Δt + rki) + (−ci/Δt + (1 − r)ki) = 0.

From eqn (6.34), it may be seen that if |λ| < 1, the scheme is stable. Thus
eqns (6.35) and (6.31) give the following condition for stability,
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∣∣∣∣1 − (1 − r)ωi Δt

1 + rωi Δt

∣∣∣∣ < 1,

which yields the inequality

(6.36) ωi Δt (1 − 2r) < 2.

Thus the scheme is unconditionally stable for r ≥ 1
2 , since eqn (6.36) will always

be satisfied no matter how large is the time step Δt. However, if r ≤ 1
2 , the

stability is conditional, since the time step Δt must be such that

Δt <
2

(1 − 2r)ωi
.

A similar procedure may be adopted for the stability analysis of the time-
stepping method for the wave equation, see Exercise 6.12.

6.6 Exercises and solutions

Exercise 6.1 Show that, with the notation of Lemma 6.1,

I[uh + εv] = I[uh] + 2ε[A(uh, v) − (f, v)] + ε2A(v, v).

Exercise 6.2 With the notation of Section 6.1, consider an element [e] of length
h. Let Δ(x) = u0(x) − ũ(x), and suppose that in element [e] it is given as a
Fourier sine series by

(6.37) Δ(x) =
∞∑
1

bn sin(nπx/h).

Use Parseval’s identity to obtain expressions for∫ ih

(i−1)h

(Δ′)2 dx and
∫ ih

(i−1)h

Δ2 dx,

where [e] contains nodes i − 1 and i. Hence show that

||u′
0 − ũ′

I | |0 ≤ h

π
||u′′

0 | |0
and

||u0 − ũI ||0 ≤ h

π
||u′′

0 | |0.

Deduce that

A(u0 − ũI , u0 − ũI) ≤
(

h2

π2
P +

h4

π4
Q

)
||u′′

0 | |20,

where P = max p(x) and Q = max q(x), a ≤ x ≤ b.
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Exercise 6.3 Consider I =
∫ 1

−1
f(x) dx. Integrals over the general range [a, b]

may be converted to [−1, 1] by the change of variable t = (2x − a − b)/(b − a).
Suppose that the integral is to be approximated by

I ≈ w1f(x1) + w2f(x2).

Find the four constants w1, w2, x1, x2 so that the formula is exact for an arbitrary
cubic.

Exercise 6.4 Repeat Exercise 3.5 using the Gauss two-point formula, obtained
in Exercise 6.3, to evaluate the integrals.

Exercise 6.5 Suppose that the integral I of Exercise 6.3 is to be approximated
using p sampling points by

I ≈ w1f(x1) + w2f(x2) + . . . + wpf(xp),

in such a manner that an arbitrary polynomial S2p−1(x), of degree 2p − 1, may
be integrated exactly.

By writing S2p−1(x) = Pp(x)q(x) + r(x), where Pp(x) is the Legendre poly-
nomial of degree p, q(x) is a polynomial of degree p − 1 and r(x) is a polynomial
of degree less than p, show that∫ 1

−1

S2p−1(x) dx =
∫ 1

−1

r(x) dx.

Deduce that ∫ 1

−1

S2p−1(x) dx =
p∑

g=1

wgS2p−1(xg),

where xj are the zeros of Pp(x); these zeros are all real. How may the weights
be found? A table of sample points and weights is given in Appendix D.

Exercise 6.6 (i) Using eqn (4.1), find ke for the quadratic element using both
one-point and two-point Gauss quadrature. (ii) Using eqn (4.10), find ke for the
Hermite element using one-point, two-point and three-point Gauss quadrature.

Exercise 6.7 Show how the one-dimensional form of Gauss quadrature over
[−1, 1] may be used to obtain numerical quadrature formulae for

I =
∫ 1

−1

∫ 1

−1

f(x, y) dx dy.

Exercise 6.8 It is required to find a quadrature rule for∫ 1

0

∫ 1−L3

0

f(L1, L2, L3) dL2 dL3,
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where L1, L2, L3 are the usual area coordinates for a triangle. Consider an
integration formula which shows no bias for any one coordinate. If three sampling
points (a, b, c), (b, c, a), (c, a, b) are taken, then there are only six independent
parameters (a, b, c, w1, w2, w3). Thus an arbitrary quadratic can be integrated
by this rule. Find the integration points and the corresponding weights. A table
of quadrature formulae for triangles is given in Appendix D.

Exercise 6.9 A typical boundary triangular element will have one curved side.
Consider the case of such a quadratic triangle with the straight sides parallel to
the coordinate axes, see Fig. 6.4(b). If detJ 
= 0 in the element, show that node
5 must lie inside the shaded region in Fig. 6.4(b).

Exercise 6.10 Consider the linear triangular element with three mid-side nodes
shown in Fig. 6.5. Find a suitable shape function matrix and hence find the
element stiffness matrix. Show that, in general, this is not a conforming element.
By considering the solution of Laplace’s equation in a unit square comprising
two such elements, show that it passes the patch test.

3

6 5

4

6

3

(y3 – y1)1 4 2
1
4+

5

1 2

L1

L2

(a) (b)

x

x1

y

y1

(x2 – x1)
1
4+

Fig. 6.4 A quadratic triangle with one curved side: (a) parent element; (b) distorted
element.

3 2

1

L2

L3

L1

Fig. 6.5 A linear triangle with three mid-side nodes.
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Exercise 6.11 Using the results of Exercise 5.6 and eqns (3.65) and (3.66), find
expressions for ∂ue/∂x and ∂ue/∂y inside the elements of type 1 and 2 in Fig. 6.3.
Hence show that for each type,

∂ũe

∂x
=

Ui+1j − Uij

h
,

∂ũe

∂y
=

Ui+1j − Uij

h
.

Exercise 6.12 In Exercises 5.11 and 5.12, it is shown that the system of equa-
tions (5.60) arises in the finite element idealization of the equation of telegraphy,
and a weighted residual approach in time yields the difference equation (5.64).
The results for the unforced wave equation may be obtained by putting μ = 0,
which gives C = 0, so that

(6.38) MÜ + KU = 0.

Obtain the uncoupled form of eqn (5.64) in this case, and hence show that the
scheme is unconditionally stable if

β ≥ 1
4

(
γ + 1

2

)2
, γ ≥ 1

2 , 1
2 + γ + β ≥ 0.

Solution 6.1

I[u] =
∫ b

a

{
p(u′)2 + qu − 2fu

}
dx

= A(u, u) − 2(f, u).

Thus

I[uh + εv] = A(uh + εv, uh + εv) − 2(f, uh + εv)

= A(uh, uh) + εA(v, uh) + εA(uh, v) + ε2A(v, v)

− 2(f, uh) − 2ε(f, v)

= I[uh] + 2ε[A(uh, v) − (f, v)] + ε2A(v, v).

Solution 6.2 With the notation of Fig. 3.7, Δ(x) = 0 at nodes A and B and is
given in the element by eqn (6.37). Differentiating this series and using Parseval’s
identity, it follows that

∫ ih

(i−1)h

(Δ′)2 dx =
h

2

∑ n2π2

h2
a2

n,

∫ ih

(i−1)h

(Δ′′)2 dx =
h

2

∑ n4π4

h4
a2

n.
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Since n ≥ 1,

n2π2a2
n

h2
≤ h2

π2

n4π4a2
n

h4
.

Therefore ∫ ih

(i−1)h

(Δ′)2 dx ≤ h2

π2

∫ ih

(i−1)h

(Δ′′)2 dx

=
h2

π2

∫ ih

(i−1)h

(u′′
0)2 dx,

since Δ′′ = u′′
0 − ũ′′

0 = u′′
0 because ũ is linear. Thus, summing over all elements,

||u′
0 − ũ′| |20 =

∫ b

a

(Δ′)2 dx ≤ h2

π2
||u′′

0 | |20.

Similarly,

||u0 − ũ||20 =
∫ b

a

Δ2 dx ≤ h4

π4
||u′′

0 | |20.

Thus, since A(u0 − ũ, u0 − ũ) =
∫ b

a
{p(Δ′)2 + qΔ2} dx, the final result follows.

Solution 6.3 The formula is to be exact for the arbitrary cubic a0 + a1x +
a2x

2 + a3x
3; thus it must be exact for each of the four linearly independent

terms 1, x, x2, x3.
Now,∫ 1

−1

1 dx = 2,
∫ 1

−1

x dx = 0,
∫ 1

−1

x2 dx = 2
3

∫ 1

−1
x3 dx = 0.

Thus w1 + w2 = 2, w1x1 + w2x2 = 0, w1x
2
1 + w2x

2
2 = 2

3 , w1x
3
1 + w2x

3
2 = 0.

Solving these equations gives x1 = −1/
√

3, x2 = 1/
√

3, w1 = 1, w2 = 1.
Thus these sampling points and weights give the Gauss two-point formula∫ 1

−1

f(x) dx ≈ f
(
− 1√

3

)
+ f

(
1√
3

)
.

Solution 6.4 In the evaluation of the element stiffnesses, constants only are
integrated. These, of course, are integrated exactly using the Gauss two-point
formula; thus ke is as given in Example 3.1. Using the result of Exercise 3.5,

fe ≈ 0.25
4

exm

[(
1 + 1√

3

)
e−α +

(
1 − 1√

3

)
eα

(
1 − 1√

3

)
e−α +

(
1 + 1√

3

)
eα

]T

,

where α = 0.125/
√

3,

= exm [0.12011 0.13054]T .
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This agrees to five decimal places with the result in Exercise 3.5, and hence the
finite element solution will be the same as that given there.

Solution 6.5 S2p−1(x) = Pp(x)q(x) = r(x). Since q(x) is a polynomial of
degree p − 1, it follows that it may be written as a linear combination of
P0, P1, . . . , Pp−1. Now, the Legendre polynomials are orthogonal over [−1, 1];
thus ∫ 1

−1

Pp(x)q(x) dx = 0

and it follows that ∫ 1

−1

S2p−1(x) dx =
∫ 1

−1

r(x) dx;

r(x) is a polynomial of degree less than p, and consequently it is integrated
exactly by the quadrature rule:∫ 1

−1

r(x) dx =
p∑

g=1

wgr(xg).

If the xg are chosen such that Pp(xg) = 0, then S2p−1(xg) = r(xg) and hence

∫ 1

−1

S2p−1(x) dx =
p∑

g=1

wgS2p−1(xg).

The weights wg may be found from the system of p linear equations

∫ 1

−1

xj−1 dx =
p∑

g=1

wgx
j−1
g , j = 1, . . . , p.

The (2p − 1)-point Gauss quadrature rule integrates exactly polynomials of
degree p.

Solution 6.6 (i) Using eqn (4.1), we obtain the following values for ke for the
quadratic element.

One-point quadrature :
1
h

⎡
⎣ 1 0 −1

0 0 0
−1 0 1

⎤
⎦ .

Two-point quadrature :
1
h

⎡
⎣2.33333 −2.66667 0.33333

5.33333 −2.66667
sym 2.33333

⎤
⎦ .

(ii) Using eqn (4.10), we obtain the following values for ke for the Hermite
element.
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One-point quadrature :
1
h

⎡
⎢⎢⎣

4.5 0.75h −0.45 0.75h

0.125h2 −0.75h −0.125h2

4.5 −0.75h

sym 0.125h2

⎤
⎥⎥⎦ .

Two-point quadrature :
1
h

⎡
⎢⎢⎣

1 0 −1 0
0.08333h2 0 −0.08333h2

1 0
sym 0.08333h2

⎤
⎥⎥⎦ .

Three-point quadrature :
1
h

⎡
⎢⎢⎣

1.2 0.1h −1.2 0.1h

0.133333h2 −0.1h −0.03333h2

1.2 −0.1h

sym 0.13333h2

⎤
⎥⎥⎦ .

We notice that for the quadratic element, the one-point formula is very
poor but we obtain the exact values with the two-point formula. For the Hermite
element, neither the one-point nor the two-point formula is sufficient. We require
to use the three-point formula to obtain the exact value. The reason is that
the integrals for the quadratic element are themselves quadratic. Those for the
Hermite element are quartic. These results are consistent with the result of
Exercise 6.5: a polynomial of degree 2p − 1 is integrated exactly by a Gauss
formula of order p.

Solution 6.7 I =
∫ 1

−1

∫ 1

−1
f(x, y) dx dy. If the x integral is performed, keeping y

constant and using the results of Exercise 6.5, then

I ≈
∫ 1

−1

{
p1∑

g=1

wgf(xg, y)

}
dy.

Using the results of Exercise 6.5 again for the y integral,

I ≈
p2∑

k=1

wk

{
p1∑

g=1

wgf(xg, yk)

}

=
p2∑

k=1

p1∑
g=1

wkwgf(xg, yk).

Polynomials of order 2p1 − 1 in the x-direction and 2p2 − 1 in the y-direction
are evaluated exactly by this formula.

Solution 6.8 I ≈ w1f(a, b, c) + w2f(b, c, a) + w3f(c, a, b) is to be exact for an
arbitrary quadratic function. Consider the six linearly independent functions
1, L2, L3, L

2
2, L

2
3, L2L3; integrating these in turn using eqn (3.67) gives
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1
2 = w1 + w2 + w3,

1
6 = w1b + w2c + w3a = w1c + w2a + w3b,

1
12 = w1b

2 + w2c
2 + w3a

2 = w1c
2 + w2a

2 + w3b
2,

1
12 = w1bc + w2ca + w3ab.

This set of non-linear algebraic equations has a solution

w1 = w2 = w3 = 1
6 , a = b = 1

2 , c = 0.

Solution 6.9 The transformation from the xy plane to the L1L2 plane is
given by

x = x1 + (x2 − x1)L1 + (4x5 − 2x1 − 2x2)L1L2,

y = y1 + (y3 − y1)L2 + (4y5 − 2y1 − 2y3)L1L2.

Thus

J =
[
(x2 − x1) + (4x5 − 2x1 − 2x2)L2 (4y5 − 2y1 − 2y3)L2

(4x5 − 2x1 − 2x2)L1 (y3 − y1) + (4y5 − 2y1 − 2y3)L1

]
.

Hence
detJ = (x2 − x1)(y3 − y1) + (y3 − y1)(4x5 − 2x1 − 2x2)L2

+(x2 − x1)(4y5 − 2y1 − 2y3)L1.

At node 1, detJ > 0. Thus, since it is linear, a necessary and sufficient condition
for the non-vanishing of detJ inside the element is that it is positive at nodes 2
and 3.

Therefore

(y3 − y1) + (4y5 − 2y1 − 2y3) > 0 and (x2 − x1) + (4x5 − 2x1 − 2x2) > 0,

and thus

y5 > y1 + (y3 − y1)/4 and x5 > x1 + (x2 − x1)/4;

i.e. node 5 must lie inside the shaded region of Fig. 6.4(b).

Solution 6.10 A suitable shape function matrix is

Ne = [1 − 2L1 1 − 2L2 1 − 2L3].

Now,

Kij =
∫ ∫

[e]

(
∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y

)
dx dy

=
1
A

(bibj + cicj)
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x

y

2 3

[1]

[2]

4

1

Fig. 6.6 Unit square divided into two triangular elements.

using the notation and results of Section 3.8.
Consider Laplace’s equation in the unit square shown in Fig. 6.6. A solution

is u = x − y, and the boundary conditions consistent with this solution are
U1 = 1

2 , U2 = − 1
2 , U4 = 1

2 , U5 = − 1
2 . Thus, using the results of Example 3.3,

k1 =
1

2

3

1⎡
⎣ 2

sym

2

0
2

3

−2
−2

4

⎤
⎦ 5

4

3

= k2.

Thus the overall equation for the unknown U3 is

2(−U1 − U2 + 4U3 − U4 − U5) = 0,

which gives U3 = 0. Interpolating the solution in each element yields

ũ1 = (1 − 2L1)
(

1
2

)
+ (1 − 2L2)

(− 1
2

)
= L2 − L1

= x − y,

ũ2 = (1 − 2L2)
(

1
2

)
+ (1 − 2L3)

(− 1
2

)
= L3 − L2

= x − y,

i.e. the finite element solution coincides with the exact solution and the element
passes the patch test.

Solution 6.11 With the local node numbering of Fig. 5.4,

∂ũe

∂x
= U1

b1

2A
+ U2

b2

2A
+ U3

b3

2A
,

∂ũe

∂y
= U1

c1

2A
+ U2

c2

2A
+ U3

c3

2A
.
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Thus for elements of type 1,

∂ũe

∂x
=

U2 − U1

h
,

∂ũe

∂y
=

U3 − U1

h
,

and for elements of type 2,

∂ũe

∂x
=

U1 − U2

h
,

∂ũe

∂y
=

U1 − U3

h
.

Thus in each case, with the node numbering of Fig. 6.3, the result follows.

Solution 6.12 (Zienkiewicz et al. 2005). Consider the following oscillatory time
variation:

U = Veiωt.

Equation (6.38) then yields the eigenvalue problem

[K − ω2M]V = 0,

which, since M is symmetric and positive definite, is of the same form as
eqn (6.30), and analogous results hold for the eigenvalues and eigenvectors. Thus,
just as in Example 6.3, eqn (6.38) may be uncoupled, and hence eqn (5.64)
becomes

[1 + β(ωi Δt)2](αi)j+1 +
[−2 +

(
1
2 − 2β + γ

)
(ωi Δt)2

]
(αi)j

+
[
1 +

(
1
2 + β − γ

)
(ωi Δt)2

]
(αi)j−1 = 0.

Suppose that (αi)j+1 = λ(αi)j ; then

λ2(1 + βΩi) + λ
{−2 +

(
1
2 − 2β + γ

)
Ωi

}
+

{
1 +

(
1
2

+ β − γ

)
Ωi

}
= 0,

where Ωi = (ωi Δt)2. In the case when the roots are complex,

Ωi

{
4β − (

1
2 + γ

)2
}

> −4,

|λ|2 = 1 +
(

1
2 − γ

)
Ωi/(1 + βΩi).

Now the scheme will be stable if |λ| ≤ 1, and, after a little algebra, this condition
yields the given inequalities.



7 The boundary element method

7.1 Integral formulation of boundary-value problems

In principle, the boundary element method is just another aspect of the finite
element method. However, there is sufficient difference to warrant the new name,
which was first coined by Brebbia and Dominguez (1977).

The underlying idea is that a boundary-value problem such as that in Section
3.4, involving a partial differential equation of the form

(7.1) Lu = f in D

subject to the boundary condition

(7.2) Bu = g on C,

can be transformed to an integral equation

(7.3)
∫ ∫

D

vLu dA =
∫ ∫

D

vf dA

using any weighting function v. However, there are circumstance in which the
integral

∫ ∫
vD

Lu dA may be reduced to an integral over the boundary C by use
of a reciprocal theorem, for example Green’s theorem for potential-type problems
(Green 1828) or Somigliana’s 1886 identity (cited by Becker 1992) for elasticity
problems.

In the case of a homogeneous equation, f ≡ 0, so that the integral equation
is taken only on the boundary, thus reducing the dimensions of the problem. If
the equation is non-homogeneous, then there is a domain integral in eqn (7.3)
and it would appear that the boundary nature is lost. There are techniques to
overcome this problem, for example the dual reciprocity method (Partridge et al.
1992, Wrobel 2002), but we shall not discuss these here.

The weighting function used in the boundary element method approach is
the fundamental solution (Kythe 1996) associated with L. Suppose that L = ∇2.

N.B. Throughout this text, we have used the positive definite operator −∇2.
However, since the positive definite nature of the operator is unimportant from a
boundary element perspective, we use the standard operator ∇2 here, in common
with other boundary element authors.
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Also, for convenience, we shall suppose that the boundary condition on C

is of the form

u = g(s) on C1,(7.4)

q ≡ ∂u

∂n
= h(s) on C2,(7.5)

where C = C1 + C2.
The fundamental solution, sometimes called the free-space Green’s function,

associated with ∇2 in two dimensions is (see Exercise 7.1)

(7.6) u∗ = − 1
2π

lnR,

where R is the position vector of the field point Q (i.e. a general point in D)
relative to the source point P (i.e. a point at which the solution is sought); see
Fig. 7.1. We notice that the fundamental solution u∗ has a singularity at P .

Define a disc Dε, of radius ε, circumference Cε and centre P (see Fig. 7.1),
and consider what happens as ε → 0.

We apply the integral equation (7.3) to the region D − Dε with v = u∗,
since in D − Dε both u and u∗ are well defined. We shall develop the form for
Poisson’s equation in the first instance:∫ ∫

D−Dε

u∗ ∇2u dA =
∫ ∫

D−Dε

u∗f dA.

Then, using the first form of Green’s theorem, we obtain∫ ∫
D−Dε

u ∇2u∗ dA +
∮

C+Cε

(
u∗ ∂u

∂n
− u

∂u∗

∂n

)
ds =

∫ ∫
D−Dε

u∗f dA

C2

D

De
P

Q

e

C1

q = h

u = g

Ñ2u = 0

n

n

R

Fig. 7.1 Small disc Dε in the region D.
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or, using the notation q ≡ ∂u/∂n and q∗ ≡ ∂u∗/∂n and noting that ∇2u∗ =
0 in D − Dε,

(7.7)
∮

C+Cε

(u∗q − uq∗) ds =
∫ ∫

D−Dε

u∗f dA.

Now, on Cε, ∂/∂n ≡ −∂/∂R and R = ε. Also, on Cε, u(s) = uP +
η1(s) and q(s) = qP + η2(s), where max(|η1|, |η2|) → 0 as ε → 0.

We write

I1 =
∮

Cε

u∗q ds

and

∮
Cε

uq∗ds =
∮

Cε

upq
∗ds + I2,

where

I2 =
∮

Cε

η2q
∗ds.

Then, on Cε,

|I1| =
∣∣∣∣
∮

Cε

(
− 1

2π
lnR

)
(qP + η2) ds

∣∣∣∣
≤ 1

2π
ln ε (|qP | + |η2|) 2πε

→ 0 as ε → 0.

Also,

|I2| =
∣∣∣∣
∮

Cε

η2

(
− ∂

∂R

(
− 1

2π
lnR

))
ds

∣∣∣∣
≤ |η2| 1

2π

1
ε
2πε

→ 0 as ε → 0.

Finally, ∮
Cε

uP q∗ds = uP
1
2π

1
ε
2πε

= uP .

Hence, as ε → 0, ∮
Cε

(u∗q − uq∗) ds → uP
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and we have the integral equation

(7.8) uP =
∮

C

(u∗q − q∗u) +
∫ ∫

D

u∗f dA

for values of u inside D in terms of values of u and q on the boundary.
In Exercise 7.3, we obtain the corresponding integral equations for points

on the boundary and for points outside the boundary in the form

(7.9) cP uP =
∮

C

(u∗q − q∗u) +
∫ ∫

D

u∗f dA,

where

(7.10) cP =

⎧⎨
⎩

1, P ∈ D,

αP /2π, P ∈ C,

0, P ∈ D ∪ C,

and where αP is the internal angle between the left- and right-hand tangents at
P . If the boundary is smooth at P , then cP = 1

2 . In the terminology of integral
equations, the functions u∗ and q∗ in eqn (7.9) are called kernels of the integral
equation (Manzhirov and Polyanin 2008). A result which provides a useful check
in the boundary element method is obtained by choosing v = 1 in the first form
of Green’s theorem to obtain∫ ∫

D

∇2u dA =
∮

C

∂u

∂n
ds,

so that if u satisfies Laplace’s equation, then

(7.11)
∮

C

q ds = 0.

7.2 Boundary element idealization for Laplace’s equation

We proceed in a manner analogous to that for the finite element method in
Chapter 3. We shall approximate the boundary C by a polygon, Cn, and it
is the polygon edges which are the boundary elements. We also choose a set
of nodes, at which we seek approximations U and Q to u and q, respectively.
We shall consider in the first instance the so-called constant element. In such
an element, the geometry is a straight line segment with just one node at the
centre; see Fig. 7.2.

N.B. (i) In this element, the approximation of the function is of a lower
order than that for the geometry, and the element is known as a superparametric
element. Similarly, we can define subparametric elements (cf. the isoparametric
elements of Chapter 4).
(ii) There is no requirement for interelement continuity in the boundary element,
non-conforming elements are frequently used.
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j
[ j ]

lj

Fig. 7.2 Constant element.

We choose a set of basis functions {wj(s) : j = 1, 2, . . . , n} to approximate
u and q as follows:

(7.12) ũ =
n∑

j=1

wj(s)Uj and q̃ =
n∑

j=1

wj(s)Qj ,

where s is a measure of the arc length around Cn (cf. eqn (3.16) for a finite
element approximation). The weighting functions for the constant element are
given by

(7.13) wj(s) =
{

1, j ∈ [e],
0, j /∈ [e].

We now use point collocation with the approximations (7.12) in eqn (7.9),
remembering that for Laplace’s equation f ≡ 0, the curve C is replaced by Cn

and the boundary point P is chosen to be, successively, the nodes 1, 2, . . . , n:

ciUi =
1
2π

∮
Cn

⎛
⎝ n∑

j=1

wj(s)Qi

⎞
⎠(− lnRi) ds − 1

2π

∮
Cn

n∑
j=1

(wj(s)Uj)
(
− ∂

∂n
(lnRi)

)
ds

or

αiUi =
n∑

j=1

(∫
[j]

∂

∂n
(ln Ri) ds

)
Uj −

n∑
j=1

(∫
[j]

lnRids

)
Qj ,

j = 1, 2, . . . , n,

where R = |Ri|, Ri(s) is the position vector of a boundary point s relative to
node i, and αi = 2πci.

We can rewrite these equations as

(7.14)
n∑

j=1

HijUj +
n∑

j=1

GijQj = 0, j = 1, 2, . . . , n,

where

(7.15) Hij =
∫

[j]

∂

∂n
(lnRij) ds − αiδij
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Target element

Rij

Base node
i

[j]

Fig. 7.3 Target element [j] relative to base node i.

and

(7.16) Gij = −
∫

[j]

lnRij ds,

with Rij = |Rij | and where Rij(s) is the position vector of a point in the target
element [j] relative to the base node i; see Fig. 7.3.

Finally, then, the system of equations (7.14) may be written in matrix form
as

(7.17) HU + GQ = 0,

where U and Q are vectors of the approximations to the boundary values of u

and q, respectively.
For properly posed problems, we have boundary conditions of the form of

eqns (7.4) and (7.5) so that at any point we know only the value of either u or q,
and we partition the matrices in eqn (7.13) appropriately. Suppose that U1 and
Q2 are vectors of the known values of u and q and that U2 and Q1 are vectors
of unknown values. Then we may write eqn (7.17) as

(7.18)
[
H1H2

] [U1

U2

]
+

[
G1G2

] [Q1

Q2

]
= 0,

and hence we can rearrange it in the form

(7.19) Ax = b,

where

(7.20) A = [H2G1], b = − [
H1G2

] [U1

Q2

]

and the unknowns are given by the vector

(7.21) x =
[
U2

Q1

]
.
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Equation (7.19) is an n × n system of algebraic equations for the n unknowns
xi. We note here that the system matrix A is densely populated, non-symmetric
and non-positive definite. This is in stark contrast to the stiffness matrix for the
finite element method in Section 3.6.

The solution of the system (7.19) yields the nodal vectors U and Q, and
values at k internal points, k = 1, 2, . . . , m, may be obtained using the discrete
form of eqn (7.9) for k inside the boundary:

Uk =
1
2π

∮
Cn

⎡
⎣
⎛
⎝ n∑

j=1

wj(s)Uj

⎞
⎠ ∂

∂n
lnRk −

⎛
⎝ n∑

j=1

wj(s)Qj

⎞
⎠ lnRk

⎤
⎦ ds,

k = 1, 2, . . . ,m.

We write this in matrix form as

(7.22) UI = H̆U + ĞQ,

where

(7.23) H̆kj =
1
2π

∫
[j]

∂

∂n
(lnRkj) ds and Ğkj = − 1

2π

∫
[j]

lnRkj ds.

The integrals required to evaluate Hij and Gij , eqns (7.15) and (7.16), involve
the kernels (∂/∂n)(ln R) and lnR and may be considered to be of two types:

1. Base node not in target element. In this case, all the integrals are non-singular
and standard Gauss quadrature can be used. It is also possible to obtain
analytic values; see Exercise 7.5.

2. Base node in target element, i = j singular integral. In this case, the integrals
are singular and we cannot use a standard Gauss quadrature. We proceed as
follows.

To evaluate the integrals for Gij , which have a logarithmic singularity
(eqn (7.16)), we can use a special logarithmic Gauss quadrature; see Appendix
D. However, in this case we can obtain analytic values for the singular
integrals, and we shall see how to do that in Section 7.3.
The singularity in the integral for Hij , eqn (7.15), is O(1/R), and such
integrals usually require special treatment. The term Hij also requires com-
putation of the parameter αi. Both these difficulties may be overcome in the
case of the Laplace operator. We notice that we can apply our approach to
the problem whose unique solution is u ≡ 1. The equivalent boundary-value
problem is

∇2u = 0 in D, u = 1 on C,

and clearly q = 0 on C.
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Hence U = [1 1 . . . 1]T and Q = [0 0 . . . 0]T , satisfying eqn (7.15) so that

HU = 0.

Consequently, it follows that

(7.24) Hii = −
n∑

j=1

′Hij , i = 1, 2, . . . , n,

and the diagonal terms are found from the sum of the off-diagonal terms, a
very convenient result.

Finally, all integrals in the computation of H̆jk and Ğjk (eqn (7.21)) are non-
singular and a standard Gauss quadrature can be used.

Once all elements of the matrices H and G are evaluated, the matrices A

and b are assembled (eqn (7.20)), and the system (7.19) is solved by a suitable
routine. This leads to values for U and Q on the boundary, and internal values
are obtained using eqn (7.22). We note here that even though the evaluation of
the internal values uses the approximate boundary values, the internal values are
often more accurate than the computed values on the boundary. However, care
is needed for internal points close to the boundary, since the values of Rkj in
eqns (7.23) can become very small compared with the element length. A useful
rule of thumb is that internal points should be no closer to the boundary than
one quarter of the minimum length of a boundary element.

7.3 A constant boundary element for Laplace’s equation

The element is shown in Fig. 7.3, and in Fig. 7.4 we define some of the geometry
of element [j], whose length is lj .

2

Rij

1

[ j]

nj

j

dij

qij

i

Fig. 7.4 Geometry for the constant element [j].
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We calculate the coefficients Hij and Gij . Suppose that the base node i is
not in the target element [j]. Then

∂

∂n
(lnRij) = (gradR · n)ij

=
1

Rij
Rij · nj

=
cos θij

Rij

=
dij

R2
ij

so that, using Gauss quadrature, we obtain

Hij =
∫

[j]

dij

R2
ij

ds

=
ljdij

2

∫ 1

−1

1
R2

ij(ξ)
dξ

≈ ljdij

2

G∑
g=1

1
R2

ij(ξg)
wg.(7.25)

We note here that if node i is in element [j], then nj is perpendicular to Rij and
Rij · nj = 0, so that Hii = −αi. We shall use eqn (7.24) to compute Hii and,
where appropriate, use this result as a check:

Gij = −
∫

[j]

lnRij ds

= − lj
2

∫ 1

−1

lnRij(ξ) dξ

≈ − lj
2

G∑
g=1

lnRij(ξg)wg.(7.26)

Now, to obtain Gii we use the notation of Fig. 7.5:

2

1

[i]

i

Rii

Fig. 7.5 Base node in target element.
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Gii = −
∫

[j]

lnRii ds

= −2
∫ 1

0

ln
(

li
2

η

)
li
2

dη

= −li

∫ 1

0

(
ln

(
1
2 li

)
+ ln η

)
dη

= −li ln
(

1
2 li

)− li

∫ 1

0

ln η dη.(7.27)

In Exercise 7.4, we show that Gii = li
(
1 − ln

(
1
2 li

))
. The coefficients Hkj and

Gkj are obtained using Gauss quadrature. In Exercise 7.5, we obtain analytic
expressions for Hij and Gij .

Example 7.1 Solve Laplace’s equation in the unit square subject to the bound-
ary conditions

u(x, 0) = u(x, 1) = 1 + x,

q(0, y) = −1, q(1, y) = 1,

with four constant boundary elements as shown in Fig. 7.6.
We shall use four-point Gauss quadrature for the integrals, and with the

notation of Fig. 7.6 we find

R12(ηg) : 0.504798 0.599088 0.835995 1.056389

so that
4∑

g=1

1
R2

12

(ξg)wg = 4.426960.

3

1

4 2

Fig. 7.6 Boundary nodes for the problem in Example 7.1.
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Hence, using eqn (7.25),

H12 =

(
1 × 1

2

)
2

× 4.426960 = 1.106740.

By symmetry, H14 = H12. Similarly,

H13 = 0.927812.

Now,

H11 = −(H12 + H13 + H14)

= −3.140762.

Now α1 = π, so we see that H11 ≈ −α1 as expected.
The values Hij (i = 1, 2, 3, 4; j = 1, 2, 3, 4) may be obtained by symmetry.

Also,

4∑
g=1

lnR12(ηg)wg = −0.669656.

Hence, using eqn (7.26),

Gij =
(− 1

2

)× (−0.669656) = 0.334828.

By symmetry, G14 = G12. Similarly,

G13 = 0.038869.

Using the result of Exercise 7.3, we have G11 = 1.693147.
Hence our overall system matrices are

H =

1⎡
⎢⎢⎣

−3.14076
1.10674
0.92781
1.10674

2

1.10674
−3.14076

1.10674
0.92781

3

0.92781
1.10674

−3.14076
1.10674

4

1.10674
0.92781
1.10674

−3.14076

⎤
⎥⎥⎦

1

2

3

4

,

G =

1⎡
⎢⎢⎣

1.69315
0.33483
0.03887
0.33483

2

0.33483
1.69315
0.33483
0.03887

3

0.03887
0.33483
1.69315
0.33483

4

0.33483
0.03887
0.33483
1.69315

⎤
⎥⎥⎦

1

2

3

4

.

Now we apply the boundary conditions and partition H and G accordingly. At
nodes 2 and 4 we specify u, and at nodes 1 and 3 we specify q; hence we obtain
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A =

2⎡
⎢⎢⎣

1.10674
−3.14076

1.10674
0.92781

4

1.10674
0.92781
1.10674

−3.14076

1

1.69315
0.33483
0.03887
0.33483

3

0.03887
0.33483
1.69315
0.33483

⎤
⎥⎥⎦,

b =
2[

3.31943
4

−4.97450
1

3.31943
3

−1.66594
]T

,

and solving Ax = b yields

x =
2[

1.907
4

1.094
1

−0.001
3

−0.001
]T

.

Hence we have the nodal values

U =
1[
1.5

2

1.907
3

1.5
4

1.094
]T

,

Q =
1[−0.001

2

1
3

−0.001
4

−1
]T

.

The exact solution is u = 1 + x. We see that the approximate values given above
compare very well, given the very coarse approximation. The approximate value
of

∮
C

q ds is −0.002, which again is close the the exact value, zero (eqn (7.11)).
Equation (7.23) yields the following coefficients for the computation of

internal values (cf. eqns (7.25) and (7.26)):

H̆kj ≈ ljdkj

4π

G∑
g=1

1
R2

kj(ξg)
wg, Ğkj ≈ − lj

4π

G∑
g=1

lnRkj(ξg)wg.

We shall obtain the solution at
(

1
2 , 1

2

)
.

At
(

1
2 , 1

2

)
,

R11(ξg) : 0.659840 0.528107 0.528107 0.659840.

Hence

H̆11 = 0.24965 = H̆12 = H̆13 = H̆14

and ∑
H̆ij = 0.999,

very close to 1; see Exercise 7.7.
Also,

Ğ11 = 0.08928 = Ğ12 = Ğ13 = Ğ14.
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Now,

u

(
1
2
,
1
2

)
=

4∑
j=1

H̆1jUj +
4∑

j=1

Ğ1jQj

= 1.498.

N.B. As mentioned earlier, this internal potential value is more accurate than
the potential values on the boundary.

The solution at
(

1
2 , 3

4

)
is given in Exercise 7.6.

7.4 A linear element for Laplace’s equation

We shall consider an element with two nodes, just as we did for the linear finite
element in Section 3.5, illustrated in Fig. 3.7. The geometry and parameters for
the element are the same as those for the constant element, see Fig. 7.4.

In this case we find that the integrals for Hij , Gij , H̆kj and Ğkj are
taken over the two elements containing node j. The details are obtained in
Exercise 7.9.

Example 7.2 Consider the problem of Example 7.1 using the linear element of
Exercise 7.9. We shall assume that we have a Dirichlet problem with u known
at all four nodes.

H =

1⎡
⎢⎢⎢⎣
−1.57081

0.43883
0.69312
0.43883

2

0.43883
−1.57081

0.43883
0.69312

3

0.69312
0.43883

−1.57081
0.43883

4

0.43883
0.69312
0.43883

−1.57081

⎤
⎥⎥⎥⎦,

G =

1⎡
⎢⎢⎢⎣

1.50000
0.21460

−0.19315
0.21460

2

0.21460
1.50000
0.21460

−0.19315

3

−0.19315
0.21460
1.50000
0.21460

4

0.21460
−0.19315

0.21460
1.50000

⎤
⎥⎥⎥⎦ .

Since this is a Dirichlet problem, A = G and, using the known values of u, we
find

b =
1[−1.13192

2

1.13201
3

1.13201
4

−1.13192
]T

;

the solution is

Q =
1[−0.6684

2

0.6684
3

0.6684
4

−0.6684
]T

.
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For the internal potential value, we have

H̆11 = 0.24965 = H̆12 = H̆13 = H̆14,

Ğ11 = 0.08928 = Ğ12 = Ğ13 = Ğ14,

so that
(

1
2 , 1

2

) ≈ 1.498.
The boundary values of q are significantly different from the exact values

for q. The exact value for the potential is u = 1 + x, which gives

q(x, 0) = 0, q(1, y) = 1, q(x, 1) = 0, q(0, y) = −1.

The problem arises because, at each node, the direction of q depends on the
element under consideration. This is an example of the so-called ‘corner-node
problem’, and there have been a variety of ways to overcome it. We shall describe
just one of these ways.

The approximation for u and q as given by eqn (7.12) has the same set of
basis functions for both variables; this does not have to be the case. Indeed, we
may even choose different sets of nodes for the two variables. Suppose we consider
the linear element and approximate u in the same manner as in Exercise 2.8.
This will yield the n × n matrix H associated with the n × 1 column vector U.
Now, for the q approximation, suppose we consider the set-up shown in Fig. 7.7
so that we have discontinuous elements for q. Using the notation of Exercise 7.9,
the contributions to the boundary element equations in this case would be

gij−1q
−
j + gijq

+
j .

N.B. In Exercise 7.9 we have just one value, qj , and the contribution is (gij−1 +
gij)qj .

So, now we have an n × 2n matrix G associated with a 2n × 1 column vector
Q. Our overall system is again of the form

HU + GQ = 0.

However, care is needed in applying the boundary conditions; we now have 2n
unknowns but only n conditions, either Dirichlet or Neumann. We shall not give
the details here as to how we handle this; an excellent description has been given

[j + 1]
[j]

j

qj
+ qj

–

Fig. 7.7 Nodal fluxes in adjacent elements.
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by Paŕıs and Cañas (1997), who also explain some of the other techniques for
handling the corner problem. These authors also give very good descriptions of
a variety of boundary elements, including isoparametric quadratics and circular
elements.

We have considered only Dirichlet or Neumann conditions. In principle, a
Robin condition is not difficult to incorporate; see Exercise 7.10.

Finally, let us consider briefly Poisson’s equation ∇2u = f , which leads to
the integral equation (7.9), comprising the domain integral

∫ ∫
D

u∗f dA. If f can
be written as ∇2F for some function F , then Poisson’s equation can be written
as Laplace’s equation

∇2w = 0,

where w = u − F .
The boundary conditions for u yield boundary conditions for w, and hence

we can use the boundary element method for the solution.
It is clear from this chapter that there are many similarities between the

development of the system matrices for the finite element method and for the
boundary element method. The major difference is that the boundary element
method requires the evaluation of singular integrals. In this section, we have seen
how to evaluate them for the constant element. There are other approaches, and
we shall mention just two.

The logarithmic integrals involved in the evaluation of Gii (see eqn (7.16)
and the solution to Exercise 7.4) have been evaluated analytically. However,
there is an alternative approach using a form of logarithmic Gauss quadrature
given by

∫ 1

0

f(ξ) ln ξ dξ ≈ −
ng∑

g=1

wgf(ξg),

where the Gauss points and associated weights are given in Appendix D.
An alternative approach was developed by Telles (1987), in which a coor-

dinate transformation is developed in such a way that the Jacobian vanishes
at the singularity. The effect is to render the integral amenable to standard
Gauss quadrature. The major advantage of this technique is that it is also
applicable to the non-singular integrals, and so there is no need to distinguish
between the cases in which the base node is or is not in the target element. It
is particularly useful for situations where the integrands involve functions other
than logarithms, for example for those integrals involving the modified Bessel
function in the following section.
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7.5 Time-dependent problems

In this section, we give a brief introduction to the solution of the diffusion
problem

(7.28) ∇2u =
1
α

∂u

∂t
in D

subject to the boundary conditions

u = g(s) on C1,(7.29)

q = h(s) on C2(7.30)

and the initial condition

(7.31) u(x, y, 0) = u0(x, y).

There are three possible approaches to dealing with such problems.

Finite difference method

An explicit finite difference approach in t (Smith 1985) will yield an elliptic
problem of the form

∇2u(k+1) = α
u(k+1) − u(k)

Δt
, k = 1, 2, . . . .

This requires the treatment of a domain integral at each time step.
We shall not take this further, but refer the reader to Wrobel (2002).

Time-dependent fundamental solution

It can be shown (Carslaw and Jaeger 1986) that the fundamental solution of the
differential operator ∇2 − (1/α)(∂/∂t) is given by

u∗(R, τ) =
1

4πατ
exp

(−R2

4ατ

)
with τ = T − t,

where the solution is sought at time T .
The corresponding boundary integral equation is of the form (Kythe 1995)

u(s, t) = α

∮
C

∫ t

0

(u∗q − q∗u) dτ ds +
∫ ∫

D

u∗
0u0 dA,

where u∗
0 = u∗(R, T ). A time-stepping scheme may now be used to develop the

solution (Becker 1992).
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The Laplace transform

We shall define the Laplace transform as in Section 5.5 and, applying it to the
problem defined by eqns (7.28)–(7.31), we obtain

∇2ū − λ

α
ū = u0 in D

subject to

ū = ḡ on C1,

q̄ = h̄ on C2.

We shall consider the case in which u0 ≡ 0; if u0 = ∇2F , we can follow the
approach outlined in Section 7.4. We also write p2 = λ/α

We seek the solution of

(7.32) ∇2ū − p2ū = 0 in D

subject to boundary conditions on C. Equation (7.32) is the modified Helmholtz
equation. In Exercise 7.2, we show that the fundamental solution is

ū∗ =
1
2π

K0(pR),

where K0 is the modified Bessel function of the second kind.
Since (d/dx)(K0(x)) = −K1(x) (Abramowitz and Stegun 1972), it follows

that

q̄∗ = − 1
2π

pK1(pR)
1
R

R · n,

and the boundary integral equation takes the form

ūP =
∮

C

(
K0(pR)q̄ + pK1(pR)

1
R

R · nū

)
ds.

We can set up a boundary element solution, leading to a system of equations of
the form

HŪ + GQ̄ = 0

for the boundary values of the transformed variables. Internal values ŪI may
also be computed. Finally, the inverse transform using Stehfest’s method (see
Section 5.3) will yield the solution vectors U, Q and UI .
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7.6 Exercises and solutions

Exercise 7.1 The fundamental solution for the operator L is defined as that
function u∗ which satisfies

Lu∗(r,ρ) = −δ(r,ρ)

over the whole space D. The point r is fixed, the equation is referred to this
position and δ(r,ρ) is the Dirac delta function, with the property

δ(r,ρ) = 0, r 
= ρ,

∫
D

f(ρ) δ(r,ρ) dV (ρ) = f(r).

Obtain the fundamental solution for ∇2 in two and three dimensions.

Exercise 7.2 Obtain the fundamental solution for the modified Helmholtz equa-
tion in two dimensions,

∇2u − p2u = 0.

Exercise 7.3 Show that the integral equation (7.7) becomes

cP uP =
∮

C

(uq∗ − uq∗) ds,

where

cP =

⎧⎨
⎩

1, if P is inside the boundary,

αP /2π, if P is on the boundary,

0, if P is outside the boundary.

Exercise 7.4 Obtain an analytical expression for the coefficient Gii for the
constant element.

Exercise 7.5 (Paŕıs and Cañas (1997)) In this exercise, we obtain analytic
expressions for Hij and Gij (i 
= j) for the constant element.

With reference to Fig 7.4, the angle θij varies from the value θ1 to θ2 at
ends 1 and 2, respectively, of the element. Obtain analytic expressions for Hij

and Gij .
Using these expressions, calculate the values of Hij and Gij for the problem

in Example 7.1.

Exercise 7.6 Obtain the solution at
(

1
2 , 3

4

)
for the problem of Example 7.1.

Exercise 7.7 By considering the constant solution u ≡ 1 to Laplace’s equation
in a region D, show that the coefficients H̆kj for a constant element satisfy

n∑
j=1

H̆kj ≈ 1,
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and use this result to check the solution to Exercise 7.6.

Exercise 7.8 Use the results of Example 7.1 to solve Laplace’s equation in the
unit square subject to the boundary conditions

u(0, y) = u(x, 0) = 0,

q(1, y) = y q(x, 1) = x.

Find u
(

1
2 , 1

2

)
.

Compare the results with the exact solution u(x, y) = 1 + xy.

Exercise 7.9 Obtain the coefficient matrices for a linear element.

Exercise 7.10 Show how a Robin boundary condition of the form given in
Section 2.3,

∂u

∂n
+ σ(s)u = h(s),

may be incorporated into the boundary element method.

Solution 7.1 We seek a solution which is dependent only on the distance from
our source point. Without loss of generality, suppose that this is the origin, i.e.
we seek a solution u∗(r) which satisfies(

r2 d2

dr2
+ ar

d

dr

)
u∗ = −δ(r),

where

a =
{

2 in three dimensions,
1 in two dimensions.

First we seek a solution to the homogeneous equation which has a singularity
at r = 0:

d2u∗

dr2
+

a

r

du∗

dr
= 0

and

u∗(r) =
{

k3r
−1 in three dimensions,

k2 ln r in two dimensions,

where we have ignored the additive constant in each case. Now we consider the
equation for u∗,

∇2u∗ = −δ(r,ρ)

and consider first the three-dimensional case.
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Suppose we construct a small sphere Vε, with a surface Sε of radius ε and
centre r; then we may write∫

Vε

∇2u∗ dV =
∫

Vε

−δ(r,ρ) dV

= −1.

We now apply the divergence theorem to the integral on the left-hand side to
obtain ∫

Sε

gradu∗ · n̂ dS,

so that ∫
Sε

∂u∗

∂n
(r,ρ) dS = −1 for r ∈ Vε.

Now we can write

ρ = r + RR̂,

where R̂ is the usual spherical polar unit vector in the radial direction relative
to an origin at r.

Hence, on Sε, R = ε and ∂/∂n ≡ ∂/∂R, so that

−1 =
∫

Sε

∂u∗

∂n
dS =

∫
Sε

∂u∗

∂R

∣∣∣∣
R=ε

dS

= −k3

ε2
4πε2

and

k3 =
1
4π

.

Consequently, in three dimensions,

u∗(r) =
1

4πr
.

In a similar manner, for the two-dimensional case we find

k2 = − 1
2π

and

u∗(R) = − 1
2π

lnR.
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Solution 7.2 Following in the same manner as in Exercise 7.1, we write the
modified Helmholtz equation in two dimensions as

d2u

dR2
+

1
R

du

dR
− p2u = 0.

If we let x = pR, then this equation becomes

x2u′′ + xu′ − x2u = 0,

the modified Bessel equation of order zero.
Two linearly independent solutions are I0(x) and K0(x), the modified Bessel

functions of the first and second kind, respectively (Abramowitz and Stegun
1972). Now, I0(x) is well behaved as x → 0, and K0(x) ∼ − ln x. Hence, following
the solution to Exercise 7.1, we have the fundamental solution for the modified
Helmholtz equation in two dimensions as

u∗(R) =
1
2π

K0(pR).

Solution 7.3 Suppose that P is on the boundary and that there is a disconti-
nuity αP in the tangent at P ; see Fig. 7.8.

We then proceed in just the same manner as in Section 7.1, but in this case
Cε is an arc of a circle and

I2 =
1
2π

∫ αP

0

(uP + η2)
(
− ∂

∂R
lnR

)∣∣∣∣
R=ε

ε dθ

→ −αP

2π
uP as ε → 0,

and cP = αP /2π.
If P is outside the boundary, then there is no need to introduce the limiting

procedure at all, and it follows from eqn (7.7) that cP = 0.

Solution 7.4 ∫ 1

0

ln η dη = [η ln η − η]10
= −1.

P

ap

Fig. 7.8 Point P on the boundary C.



The boundary element method 265

Hence, using eqn (7.27), we obtain

Gii = li
(
1 − ln

(
1
2 li

))
.

Solution 7.5 We shall use the results of Section 7.3, dropping the subscripts ij

inside the integrals

Hij =
∫

[j]

d

R2
ds.

Now,

ds =
R dθ

cos θ

=
R2 dθ

d
.

Hence

Hij =
∫ θ2

θ1

dθ

= θ2 − θ1.

Also,

Gij = −
∫

[j]

lnR ds

= −
∫ θ2

θ1

ln
∣∣∣∣ d

cos θ

∣∣∣∣ d

cos2 θ
dθ

= d

[
tan θ

(
1 + ln

∣∣∣∣cos θ

d

∣∣∣∣
)
− θ

]θ2

θ1

.

To find H12 and G12 in Example 7.1, we have

θ1 = 0, θ2 = tan−1 2, d = 0.5.

Hence H12 = 1.107149 and G12 = 0.334854.
For H13 and G13, we have

θ1 = − tan−1
(

1
2

)
, θ2 = tan−1

(
1
2

)
, d = 1.

Hence H13 = 0.927295 and G13 = 0.038867.
Similarly,

H̆kj =
1
2π

(θ2 − θ2) and Ğkj =
d

2π

[
tan θ

(
1 + ln

∣∣∣∣cos θ

d

∣∣∣∣
)
− θ

]θ2

θ1

,

giving H̆11 = 0.25 and Ğ11 = 0.08931.
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Compare H12 = 1.106740, G12 = 0.334828, H13 = 0.927812, G13 =
0.038869, H̆11 = 0.24965 and Ğ11 = 0.08928, the values obtained using
Gauss quadrature in Example 7.1.

Solution 7.6

R21(ξg) : 0.844496 0.652987 0.506361 0.531606.

Hence

H̆21 = 0.23044 = H̆23.

Similarly,

H̆22 = 0.33974 and H̆24 = 0.18715

and

Ğ21 = 0.07960 = Ğ23, Ğ22 = 0.16277, Ğ24 = 0.03530.

Hence

u

(
1
2
,
3
4

)
=

4∑
j=1

H̆2jUj +
4∑

j=1

Ğ2jQj

= 1.671

using the values of Uj and Qj from Example 7.1.
N.B. This result is not as good as that for u

(
1
2 , 1

2

)
in Example 7.1, and this

is because
(

1
2 , 3

4

)
is relatively close to the boundary approximation one quarter

of an element’s length away, contrary to our ‘rule of thumb’; see Section 7.4.

Solution 7.7 The constant solution u ≡ 1 has boundary values u = 1 and q = 0.
Hence, using eqns (7.9) and (7.10) for an internal point, we have

1 =
∮

C

(−q∗) dx

=
1
2π

∮
C

∂

∂n
(ln R) ds,

so for any internal point k we have

1
2π

∮
C

∂

∂n
(lnRk) ds = 1

and hence
n∑

j=1

H̆kj ≈ 1.
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Using the results of Exercise 7.6, we find

4∑
j=1

H̆2j = 0.988,

close to 1 as expected.

Solution 7.8 In this case we find the matrices

A =

2⎡
⎢⎢⎣

1.10674
−3.14076

1.10674
0.92781

3

0.92781
1.10674

−3.14076
1.10674

1

1.69315
0.33483
0.03887
0.33483

4

0.33483
0.03887
0.33483
1.69315

⎤
⎥⎥⎦,

b =
2[

1.84717
3

−3.04854
1

−3.04854
4

1.84717
]T

,

and the solution is given by

x =
2[

1.407
3

1.407
1

−0.500
4

−0.500
]T

.

Hence we have the nodal values

U =
1[
1

2

1.407
3

1.407
4

1
]T

,

Q =
1[−0.500

2

0.5
3

0.5
4

−0.500
]T

.

The exact values are u2 = u3 = 1.5 and q2 = q3 = 0.5. Using the values of H̆ij

and Ğij from Example 7.1, we find

u
(

1
2 , 1

2

) ≈ 1.157.

In this case the error in the internal value is similar to the errors in the boundary
values.

Solution 7.9 The basis functions are the nodal functions of Section 3.5 and we
have, using the notation of Fig. 7.4,

Hij = hij + hij−1 − αiδij

with

hiJ =
diJ lJ

4

∫ 1

−1

(1 ± ξ)
1

R2
iJ (ξ)

dξ,
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and

Gij = gij + gij−1

with

giJ = − lJ
4

∫ 1

−1

(1 ± ξ) ln RiJ(ξ) dξ,

where we take the positive or negative sign when J = j or (j − 1), respectively.
There are three possibilities:

(1) Base node not in target element. The integrals are non-singular, and we can
use a standard Gauss quadrature.

(2) Base node in target element i = j − 1 or i = j + 1. Just one of the integrals
is singular; the other may be computed using a standard Gauss quadrature.
As in Section 7.3, it follows that hi i−1 = hi i+1 = 0. Hii is obtained using
the ‘row sum’ technique of eqn (7.24):

gj j−1 = − lj−1

4

∫ 1

−1

(1 − ξ) ln
[
1
2 (1 − ξ)lj−1

]
dξ

=
lj−1

2
(
ln lj−1 − 1

2

)
and

gj j+1 =
lj
2

(
ln lj − 1

2

)
.

(3) Base node in target element i = j.

gjj = − lj
4

∫ 1

−1

(1 + ξ) ln
[
1
2 (1 − ξ)lj

]
dξ

=
lj
2

(
ln lj − 3

2

)
.

The singular integrals for gi j−1 and gjj are also obtained using logarithmic Gauss
quadrature as follows. We use the change of variable η = 1

2 (1 − ξ) to obtain

gj j−1 = lj−1

∫ 1

0

(η ln lj−1 − η ln η) dη

and

gij = lj

∫ 1

0

((1 − η) ln lj − (1 − η) ln η) dη.
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Using any order of logarithmic Gauss quadrature, we find that∫ 1

0

(1 − η) ln η dη = −0.75

and ∫ 1

0

η ln η dη = −0.25

so that we recover the exact values for gj j−1 and gjj .
The expressions for H̆kj and Ğkj are given by

H̆kj = h̆kj + h̆k j−1, Ğkj = ğkj + ğk j−1,

where

h̆kJ =
dkJ lJ
8π

∫ 1

−1

(1 ± ξ)
1

R2
kJ(ξ)

dξ

and

ğkJ = − lJ
8π

∫ 1

−1

(1 ± ξ) ln(RkJ(ξ)) dξ.

Solution 7.10 We partition the matrices H and G in eqn (7.17) according to
the boundary conditions

[
H1 H2 H3

] ⎡⎣U1

U2

U3

⎤
⎦ +

[
G1 G2 G3

] ⎡⎣Q1

Q2

Q3

⎤
⎦ = 0,

where the superscripts 1 and 2 refer to Dirichlet and Neumann conditions,
respectively, as before. Superscript 3 refers to a Robin condition of the form

q + σu = h.

We can use this form to eliminate one of the variables at the appropriate node
to obtain a system of equations of the form

[
H2 G1 H3 − G3 diag(σj)

] ⎡⎣U2

Q1

U3

⎤
⎦ = − [

H1 G2 G3
] ⎡⎣U1

Q2

h

⎤
⎦ ,

and proceed in the usual manner.



8 Computational aspects

At the time of publication of the first edition of this text, we did not consider
it necessary to include details of the computational aspects of the finite element
method. However, computing power and availability have moved on, almost
beyond recognition, in the intervening thirty years.

The most striking progress is in the power and versatility of personal
computing environments together with a variety of ready-to-use but sophis-
ticated software. All this at very modest, previously unimaginable prices. We
have suggested throughout the text how a spreadsheet may be used to perform
some simple finite element analysis. We could equally well have chosen to use a
computer algebra package such as MATLAB R© (Kaltan 2007).

It is not the purpose of this section to provide a detailed description of the
computational processes, nor is it intended to provide a finite element suite of
programs. There are many texts to which the interested reader may refer; see,
for example, Smith and Griffiths (2004). Also, there is a large amount of software
available to users without the necessity to write finite element code. A simple
Internet search will reveal a wide variety of proprietary software, ranging from
general-purpose programs to code for very specific applications. Indeed, software
such as MATLAB is developing very rapidly, and there is now a finite element
toolbox available with the software (Fausett 2007).

In this chapter we shall discuss some of the aspects that would be considered
when writing finite element code. There are, essentially, three stages: (i) the pre-
processor, (ii) the solution phase and (iii) the post-processor. The development
of these three phases follows very closely the seven steps outlined for the model
problem in Section 3.5. For further details, see Zienkiewicz et al. (2005) and the
references cited therein.

8.1 Pre-processor

During the pre-processing phase, the finite element environment is developed
from suitable input data. This includes mesh generation, calculation of the
element matrices and assembly of the overall system of equations. By far the
most complicated aspect of this phase is that of mesh generation. Ideally, we
would like to be able to produce a mesh which enabled automatic refinement in
the region of any point to obtain an improved solution. Also, we would like the
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mesh to be generated in such a way that the bandwidth in the stiffness matrix is
minimized. The development of such automatic mesh generators is the subject
of much current research. We shall limit ourselves here to a very brief overview
of mesh generation for two-dimensional problems. Three-dimensional problems
provide a much stiffer challenge.

The first consideration is the type of element required. In general, if the
boundary is curved, geometric errors in the mismatch between the boundary and
the finite element mesh will be significantly reduced if elements with curved sides
are used. A popular generation process is the Delaunay triangulation method, in
which a region is covered by an array of triangles. Since a quadrilateral may be
obtained by combining two triangles, the Delaunay approach can be used with
either of the two elements described in Chapters 3 and 4. The Delaunay approach
develops triangles in such a way that the circumcircle of each triangle contains
no other node in the mesh. A consequence of this propery is that the ratio of the
area of the circumcircle to the area of its triangle is not large, ensuring that the
triangle does not have a large aspect ratio, a desirable property of the mesh; see
Section 6.2. For further details on mesh generation methods, see Zienkiewicz et al.
(2005) and the references therein. Once the mesh has been generated, a suitable
node numbering must be imposed, and it is important that this numbering yields
a satisfactory bandwidth.

The simple problem considered in Exercise 3.12 shows that the bandwidth
depends on the maximum difference between the node numbers in each eleme-
nent. This leads to the strategy that nodes should be numbered along paths that
contain the fewest nodes as we move from an element to an adjacent element
across the domain from one boundary to another.

Calculation of the element matrices is a straightforward process, usually
involving Gauss quadrature of a suitable order to effect the integrations. The
overall stiffness matrix is then assembled as the individual element matrices are
developed.

We note here that the boundary element method, as described in Chap-
ter 7, requires significantly less effort to generate a suitable mesh, since the
method reduces the geometric dimensions by one: partial differential equations
in two or three dimensions become integral equations in one or two dimensions,
respectively.

8.2 Solution phase

The solution phase is in principle well defined; we have a system of equations,
so let’s solve them. Here, the important properties of the stiffness matrix
described in Section 3.6 may be exploited. Probably the most important book
on linear algebra is Wilkinson’s classic 1965 treatise, reprinted in 1999, and
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most of the methods considered here, together with many more, are considered
there. Where appropriate, we shall indicate more recent texts. We shall restrict
ourselves to the case of linear equations of the form of eqn (3.44), which we shall
write as

(8.1) Ax = b.

The problem is to find the solution vector x, given the matrix of coefficients A

and the vector of known quantities b. We shall restrict ourselves to systems of
linear equations; readers interested in the solution of non-linear systems should
consult the text by Rheinboldt (1987).

There are two approaches: a direct approach, in which the exact solution will
be obtained in a finite number of steps, and an indirect approach, in which an
iterative process is used to obtain an approximate solution of sufficient accuracy.
The choice of method is usually dependent on the form of the equations. There
are many texts available which provide details of the solutions of systems of
linear equations; for example, Jennings and McKeown (1992) describe matrix
techniques for both systems of equations and eigenvalue problems, as well as
considering sparsity in large-order systems.

The most commonly used direct solver is the Gauss elimination process.
The system of equations (8.1) is reduced to upper triangular form

Ux = b′

by a sequence of row operations. Improved accuracy and avoidance of induced
instability are obtained by using a partial pivoting strategy. This reduced system
is now easily solved by a back-substitution process. The Gauss elimination
process can be considered as a factorization process in which A = LU, where
L is a lower triangular matrix and U an upper triangular matrix.

The finite element equations (3.44) are sparse, and such a property can
be exploited in variants of the Gauss elimination process. The equations for the
boundary element method are fully populated and are not necessarily symmetric,
and as such are usually solved with a standard Gauss elimination process. There
is a process, the multipole method (Popov and Power 2001), in which parts of the
boundary element regions are lumped together, giving a sparse system matrix
and enabling other solvers to be used.

In Section 3.6 we saw that the stiffness matrix is symmetric and positive
definite, which allows a Cholesky decomposition of the form A = LLT , where
L is a lower triangular matrix. For large systems, the Cholesky decompo-
sition requires approximately one half the number of arithmetic operations
for an LU decomposition, the number for the Cholesky decomposition being
O(n3/3) and for the LU decomposition being O(2n3/3) for an n × n system of
equations.
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Indirect approaches involve iteration, and a typical iterative method is
Gauss–Seidel iteration. If the matrix A is written as

A = L + D + U,

where D is a diagonal matrix, then the algorithm is of the form

[L + D]x(k+1) = b − Ux(k),

where iteration on k is performed until some suitable accuracy is achieved. Such
methods are particularly suitable for sparse systems. Unfortunately, convergence
is not guaranteed unless max |λi| < 1, where {λi} is the set of eigenvalues of the
iteration matrix [L + D]−1U. A stricter sufficient condition is that convergence
will occur if the matrix A is strictly diagonally dominant, i.e.

|Aii| >

n∑
j=1

′|Aij |.

More recently, conjugate gradient methods have been used, since these have
a particular relevance to the finite element method. The attraction is that it is
possible to develop the solution method without the necessity to assemble the
whole stiffness matrix. Smith and Griffiths (2004) discussed the importance of
this in the context of large three-dimensional problems, for which the computer
storage requirement can be reduced by an order of magnitude. The important
aspect is that in the iterative cycle a matrix product of the form u(k) = Ap(k)

is developed, where p(k) is a vector of length n. Clearly, this product can be
obtained on an element-by-element basis to develop the iterate u(k). Details of
the conjugate gradient method can be found in the text by Broyden and Vespucci
(2004).

An innovative idea due to Irons (1970) also enables equation solution with-
out assembling the complete stiffness matrix. The equation solution commences
while the overall stiffness matrix K is being developed. K is banded, and as each
element stiffness is incorporated, a front progresses through the band, behind
which K is fully assembled. As soon as a section of K is assembled, then the
solution process can begin and follows the movement of the front down through
the band.

Finally, we have said nothing about parallel computing, in which indepen-
dent processes may be computed simultaneously. A very attractive environment
is one in which processors are connected together and each one performs inde-
pendently on a set of data. In this way, there is the potential for speed-up of
calculation. However, interprocessor communication can have an adverse effect
on performance, and it is more usual to consider solving larger problems in
the same time rather than seeking speed-up of small problems. Much work is
currently in progress using different parallel processing paradigms; in particular,
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the nature of the boundary element method makes it particulary attractive for
implementation in a parallel environment.

This section has been deliberately short; we wish only to give a brief overview
of the techniques which may be used to solve the system of equations obtained
during a finite element analysis. Specific details may be found in the suggested
texts.

8.3 Post-processor

The post-processing phase has received a great deal of attention recently. Specif-
ically, modern graphics facilities allow a wide variety of output visualization, and
users of finite element packages will choose those output processes best suited
to their needs. In particular, finite elements are at the heart of many computer-
aided design packages, and typical output pictures can be found in the references.
Post-processing techniques are advancing very quickly, and it is now possible to
see simulations such as vibrations of structures ranging from bridges to musical
instruments and of fluid flow around aircraft and racing bicycles. In the world of
animation, film producers can use such software to produce realistic fluid motions
as a backdrop to scenes filmed indoors. An idea of the variety of applications
can be found in the texts by Burnett (1987), Aliabadi (2002), Zienkiewicz et al.
(2005) and Fish and Belytschko (2007).

As far as the boundary element method is concerned, similar comments to
those for the finite element method apply. The major difference is that the system
matrices for boundary elements are full and there is, in general, no symmetry.
However, for problems of the same geometric size, the boundary element matrices
are smaller. For more details, the interested reader may refer to Beer (2001).

8.4 Finite element method (FEM) or boundary element
method (BEM)?

When compared one with the other, each method has advantages and disad-
vantages. The major advantage of the FEM is that it is significantly further
advanced than the BEM and that there is a wide variety of easily available codes.
Also, the mathematics associated with the FEM is much more familiar: partial
differential equations are more widely known than integral equations. For non-
linear material problems, the interior of regions must be modelled, which removes
one of the major features of the BEM, i.e. a boundary-only geometry. This is
mitigated somewhat by being able to choose only those interior points which
may be particularly interesting. In the FEM, the whole interior is modelled. In
general, the BEM requires less effort in pre-processing, since only the boundary is
modelled, and remeshing is also easier. Clearly there is a difference in computer
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storage required, although we must remember that the FEM has large sparse
matrices, whereas the BEM has smaller but fully populated matrices. The FEM
is very good for the analysis of problems involving thin shells. In these cases the
BEM performs poorly, since elements on opposite sides of the shell are very close
together, leading to inaccuracies in the numerical integration.

So, neither method is ‘better’ than the other. It is important to have
both available and to use the one which is more suitable in any particular
circumstance. As a general rule, BEM for linear problems, for problems such
as fracture mechanics where variables may change rapidly over small distances
and for infinite regions; FEM for non-linear material problems. There are often
problems which comprise finite non-linear regions and infinite linear regions. In
these cases, a hybrid FEM/BEM approach is suitable.



Appendix A Partial differential
equation models in the physical
sciences

We list the models according to their classification; see Chapter 2. In the following
examples, we introduce the most commonly used symbols for the corresponding
physical quantities.

A.1 Parabolic problems

We write our generic field equation for the unknown dependent variable u in the
form

(A.1) div(k gradu) = C
∂u

∂t
+ f,

where the physical properties k, C and f may be functions of position r, time
t or, in the non-linear case, u. For anisotropic problems, we replace the scalar k

by a tensor quantity κ.
Equation (A.1) is usually a representation of a conservation law coupled

with a suitable constitutive law.

Heat conduction (Carslaw and Jaeger 1986)

u: temperature (T );
k: thermal conductivity;
ρ: density; c: specific heat; C = ρc;
f : heat source (Q);
q: heat flux.

Constitutive law: Fourier’s law, q = −k gradT .
Heat conservation law: −divq = ρc(∂T/∂t) + Q.
Heat conduction equation: div(k gradT ) = ρc(∂T/∂t) + Q.
For constant parameters and no heat sources, ∇2T = (1/α)(∂T/∂t), where

α = k/ρc is called the thermal diffusivity.
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Diffusion (Crank 1979)

u: concentration (C);
k: diffusivity (D);
C: dimensionless quantity of value 1 in eqn (A.1);
f : mass source (Q);
q: mass flux.

Constitutive law: Fick’s law, q = −D gradC.
Mass conservation law: −divq = ∂u/∂t + Q.
Diffusion equation: div(D gradC) = ∂u/∂t + Q.
For constant parameters and no mass source, ∇2C = (1/D)(∂u/∂t).

A.2 Elliptic problems

Our generic field equation is of the form

(A.2) div(k gradu) = f.

Clearly, time-independent heat conduction and diffusion reduce to elliptic prob-
lems of this type.

Electrostatics (Reitz et al. 1992)

u: electrostatic potential (φ);
k: permittivity (ε);
f : charge density (ρ);
E: electric field.

Constitutive law: E = −gradφ.
Gauss’s law: div(εE) = ρ.
Field equation: div(ε gradφ) = −ρ.
For constant parameters, ∇2φ = −ρ/ε, Poisson’s equation.

Magnetostatics (Reitz et al. 1992)

u: magnetic scalar potential (φ);
k: permeability (μ);
f = 0;
H: magnetic field.

Constitutive law: H = −grad φ, div(μH) = 0.
Field equation: div(μ gradφ) = 0.
For constant parameters, ∇2φ = 0, Laplace’s equation.



278 The Finite Element Method

Hydrodynamics (Lamb 1993)

u: velocity potential (φ);
k: dimensionless quantity of value 1 in eqn (A.2);
q: fluid velocity vector.

Constitutive law: q = gradφ.
Incompressibility law: div q = 0.
Field equation: ∇2 = 0, Laplace’s equation.

A.3 Hyperbolic problems

Our generic field equation is of the form

(A.3) ∇2u =
1
c2

∂2u

∂t2
.

Sound waves (Curle and Davies 1971)

u: velocity potential (φ);
c: speed of sound;
q: fluid velocity vector;
p: acoustic pressure;
ρ: fluid density;
s: condensation.

Constitutive relations: q = gradφ, p = ρ(∂φ/∂t), ρ = ρ0(1 + s).

Field equations: ∇2φ = (1/c2)(∂2φ/∂t2), ∇2s = (1/c2)(∂2s/∂t2).

Waves on strings and membranes (Coulson and Jeffrey 1977)

∂2u

∂x2
=

1
c2

∂2u

∂t2
, ∇2u =

1
c2

∂2u

∂t2
.

u: transverse displacement;
c: speed of wave.

For waves of the form u(r, t) = v(r)e±iωt with angular frequency ω, the hyper-
bolic equations may be written as the elliptic Helmholtz equation

∇2v + k2v = 0,

where k = ω/c, the wavenumber.
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A.4 Initial and boundary conditions

Elliptic equations are associated with steady-state problems and require suitable
conditions applied on the boundary, for example Dirichlet, Neumann or Robin
conditions; see Section 2.2.

Parabolic and hyperbolic equations are associated with systems that
progress with time. As well as suitable boundary conditions, they require ini-
tial conditions. Usually we know u(r, 0) for parabolic problems and u(r, 0),
(∂u/∂t)(r, 0) for hyberbolic problems.



Appendix B Some integral
theorems of the vector calculus

In this appendix, all functions are assumed to satisfy suitable differentiability
conditions to ensure that the resulting operations exist.

V is the volume of a three-dimensional region bounded by a surface S, with
outward unit normal n.

Gauss’s divergence theorem for a vector field F:∫
V

div F dV =
∫

S

F · n dS.

(i) If F = k gradu,

∫
V

divF dV =
∫

S

k
∂u

∂n
dS.

(ii) If E = κ gradu,

∫
V

divF dV =
∫

S

(κ gradu) · n dS.

Green’s theorem for scalar fields u and v.
First form: ∫

V

(
u ∇2v + gradu · grad v

)
dV =

∫
S

u grad v · n dS.

Second form: ∫
V

(
u ∇2v − v ∇2u

)
dV =

∫
S

(
u

∂v

∂n
− v

∂u

∂n

)
dS.

Generalized Green’s theorem for scalar fields u and v, with the tensor κ

represented by a 3 × 3 matrix.
First form:∫

V

{u div(κ grad v) + gradu · (κ grad v)} dV =
∫

S

u(κ grad v) · n dS.
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Second form, for symmetric κ:∫
V

{u div(κ grad v) + v div(κ gradu)} dV =
∫

S

{u(κ grad v)−v(κ gradu)} · n dS.

The integral theorems stated above may easily be interpreted for a two-
dimensional region D bounded by a curve C; for such regions, the operator ∇ ≡
[∂/∂x ∂/∂y]T , and κ is represented by a 2 × 2 matrix. In some of the examples
in the text, one-dimensional problems are considered, so that ∇ ≡ [d/dx]; in this
case the boundary integrals are obtained by finding the difference between the
values of the integrand at each end of the interval.



Appendix C A formula for
integrating products of area
coordinates over a triangle

I =
∫ ∫

A

Lm
1 Ln

2Lp
3 dx dy

=
∫ ∫

A

Lm
1 Ln

2 (1 − L1 − L2)p dx dy,

using eqn (3.59). It follows from eqns (3.60) and (3.61) that

dx dy =

∣∣∣∣∣ x1 − x3 x2 − x3

y1 − y3 y2 − y3

∣∣∣∣∣ dL1 dL2

= 2AdL1 dL2.

Thus

I = 2A
∫ 1

0

Lm
1 dL1

∫ 1−L1

0

Ln
2 (1 − L1 − L2)p dL2.

Consider

I(a, b) =
∫ α

0

ta(α − t)b dt

=
ta+1

a + 1
(α − t)b

∣∣∣∣
α

0

+
b

a + 1

∫ α

0

ta+1(α − t)b−1 dt

=
b

a + 1
I(a + 1, b − 1).

Thus

I(a, b) =
b(b − 1)(b − 2) . . . (2)(1)

(a + 1)(a + 2)(a + 3) . . . (a + b)
I(a + b, 0)

=
a!b!

(a + b)!
I(a + b, 0).
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Now

I(a + b, 0) =
∫ α

0

ta+b dt

=
aa+b+1

a + b + 1
,

so that

I(a, b) =
a!b!

(a + b + 1)!
αa+b+1.

Therefore

I =
2An!p!

(n + p + 1)!

∫ 1

0

Lm
1 (1 − L1)n+p+1 dL1

=
2An!p!

(n + p + 1)!
m!(n + p + 1)!

{m + (n + p + 1) + 1}! ,

i.e.

I =
2Am!n!p!

(m + n + p + 2)!
.



Appendix D Numerical
integration formulae

D.1 One-dimensional Gauss quadrature

∫ 1

−1

f(ξ) dξ ≈
G∑

g=1

wgf(ξg),

where ξg is the coordinate of an integration point and wg is the corresponding
weight; G is the total number of such points. The formula integrates exactly all
polynomials of degree 2G − 1. The coordinates of the integration points and the
corresponding weights are given in Table D.1.

D.2 Two-dimensional Gauss quadrature

Rectangular regions:.

∫ 1

−1

∫ 1

−1

f(ξ, η) dξ dη ≈
G1∑

g1=1

G2∑
g2=1

wg1wg2f(ξg1 , ηg2),

Table D.1 Coordinates and weights for one-
dimensional Gauss quadrature

G ±ξg wg

1 0 2

2 0.577 350 269 1

3 0 0.888 888 889
0.774 596 669 0.555 555 556

4 0.861 136 312 0.347 854 845
0.339 981 044 0.652 145 155

6 0.932 469 514 0.171 324 492
0.661 209 386 0.360 761 573
0.238 619 186 0.467 913 935
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Table D.2 Coordinates and weights for Gauss quadra-
ture over a triangle

G L
(g)
1 L

(g)
2 L

(g)
3 wg

1 1/3 1/3 1/3 1/2

2 1/2 1/2 0 1/6
1/2 0 1/2 1/6
0 1/2 1/2 1/6

4 1/3 1/3 1/3 −9/32
3/5 1/5 1/5 25/96
1/5 3/5 1/5 25/96
1/5 1/5 3/5 25/96

where the coordinates of the integration points and the corresponding weights
are given in Table D.1. This formula integrates exactly all polynomials of degree
2G1 − 1 in the ξ-direction and 2G2 − 1 in the η-direction.

Triangular regions:.

∫ 1

0

∫ 1−L1

0

f(L1, L2, L3) dL1 dL2 ≈
G∑

g=1

wgf
(
L

(g)
1 , L

(g)
2 , L

(g)
3

)
,

where
(
L

(g)
1 , L

(g)
2 , L

(g)
3

)
are the coordinates of the integration points, wg are the

corresponding weights and G is the total number of such points. The numerical
formulae given in Table D.2 have been chosen in such a way that there is no bias
towards any one coordinate (Hammer et al. 1956).

D.3 Logarithmic Gauss quadrature

∫ 1

0

f(ξ) ln ξ dξ ≈ −
G∑

g=1

wgf(ξg),

where ξg is the coordinate of an integration point and wg is the corresponding
weight; G is the total number of such points. The coordinates of the integration
points and the corresponding weights are given in Table D.3.
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Table D.3 Coordinates and weights for logarith-
mic Gauss quadrature

G ξg wg

2 0.112 008 062 0 718 539 319
0.602 276 908 0.281 460 681

3 0.063 890 793 0.513 404 552
0.368 997 064 0.391 980 041
0.766 880 304 0.094 615 407

4 0.041 448 480 0.383 464 068
0.245 274 914 0.386 875 318
0.556 165 454 0.190 435 127
0.848 982 395 0.039 225 487

6 0.021 634 006 0.238 763 663
0.129 583 391 0.308 286 573
0.314 020 450 0.245 317 427
0.538 657 217 0.142 008 757
0.756 915 337 0.055 454 622
0.922 668 851 0.010 168 959



Appendix E Stehfest’s formula
and weights for numerical Laplace
transform inversion

Stehfest’s procedure is as follows (Stehfest 1970a,b).
Given f̄(λ), the Laplace transform of f(t), we seek the value f(τ) for a

specific value t = τ . Choose λj = jln 2/τ , j = 1, 2, . . . , M , where M is even; the
approximate numerical inversion is given by

f(τ) ≈ ln 2
τ

M∑
j=1

wj f̄(λj).

The weights wj are given by

wj = (−1)M/2+j

min(j,M/2)∑
k=	1/2(1+j)


kM/2(2k)!
(M/2 − k)! k! (k − 1)!(j − k)!(2k − j)!

and are given in Table E.1 (Davies and Crann 2008).

Table E.1 Weights for Stehfest’s numerical Laplace transform

M = 6 M = 8 M = 10 M = 12 M = 14

1 −1/3 1/12 −1/60 1/360
−49 145/3 −285/12 961/60 −461/72
366 −906 1279 −1247 18481/20
−858 16394/3 −46871/3 82663/3 −6227627/180
810 −43130/3 505465/6 −1579685/6 4862890/9
−270 18730 −473915/2 13241387/10 −131950391/30

−35480/3 1127735/3 −58375583/15 189788326/9
8960/3 −1020215/3 21159859/3 −2877521087/45

328125/2 −16010673/2 2551951591/20
−65625/2 11105661/2 −2041646257/12

−10777536/5 4509824011/30
1796256/5 −169184323/2

824366543/30
−117766649/30
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Szabó, B. A. and Lee, G. C. (1969). Derivation of stiffness matrices for problems in plane
elasticity by Galerkin’s method. Int. J. Numer. Methods Eng., 1, 301–10.

Tao Jiang, Xin Liu and Zhengzhou Yu (2009). Finite element algorithms for pricing 2-D
basket options. ICISE, 4881–6.

Taylor, C. and Hood, P. (1973). A numerical solution of the Navier–Stokes equations
using the finite element technique. Comput. Fluids, 1, 73–100.

Telles, J. C. F. (1987). A self-adaptive co-ordinate transformation for efficient evaluation
of boundary element integrals. Int. J. Numer. Methods Eng., 24, 959–73.

Topper, J. (2005). Option pricing with finite elements. Wilmott J., 2005-1, 84–90.
Trefftz, E. (1926). Ein gegenstuck zum Ritz’schen verfahren. Proc. 2nd. Int. Congr. Appl.

Mech., Zürich.
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Euler equation, 176

Financial engineering, 6
Finite difference method, 136, 179, 183, 196,

223, 229, 259
backward, 185
central, 231
Crank–Nicholson, 185
forward, 185, 200

Finite element, 2, 90, 141
Finite element mesh, 73, 88

h-refinement, 147
p-refinement, 147
refinement, 4

Finite element method, 9, 71, 74, 75, 171,
218, 273

Finite volume method, 3
Force vector, 151

element, 83
modified, 96
overall, 74
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Frontal method, 273
Functional, 24, 26, 35, 49, 50, 171

minimization, 30, 34, 218
Fundamental solution, 6, 244, 245

time-dependent, 259

Galerkin method, 5, 16, 17, 24, 82, 90, 141,
174, 180

generalized, 5
Gauss elimination, 272
Gauss quadrature, 156, 226, 284

logarithmic, 250, 258, 286
Generalized coordinate, 76, 77, 115, 150
Geometrical invariance, 76
Global coordinate, 79, 107, 153
Global numbering, 92
Green’s function, 6, 245
Green’s theorem, 6, 10, 45, 244

first form, 23, 31, 94, 245, 280
generalized, 32, 55, 175, 280
second form, 10, 30, 54, 280

Heat equation, 8, 189, 232, 276
Helmholtz equation, 50, 279
Higher-order element, 144, 145, 153, 225
Hilbert space, 219
Hyperbolic, 7

differential operator, 7, 28, 49
equation, 7, 278

Hypercircle method, 4

Ill-conditioned matrix, 78
Ill-posed problem, 10
Incremental method, 188
Infinite

boundary, 225
element, 225
region, 225, 275

Initial condition, 7, 48, 181, 192, 279
Inner product, 218
Integral equation, 5, 226, 244, 259, 271
Interpolation

Hermite polynomials, 147, 150, 161
Lagrange polynomials, 82, 141, 144, 158
linear, 81, 109, 221, 223
polynomial, 79, 102
time variable, 185

Isoparametric element, 79, 141, 153, 154, 226
quadrilateral, 156
triangle, 157

Jacobi iteration, 217
Jacobian, 154, 170, 227, 258

Kinetic energy, 48

Lagrangian, 48
Laplace transform, 180, 192, 260

convolution theorem, 194
Stehfest’s numerical inversion method, 192,

196, 260, 287

Laplace’s equation, 8, 104, 229, 247, 251, 278
Least squares method, 15, 17, 60, 177, 205
Legendre polynomial, 235
Linear, 7, 12

differential operator, 12
operator, 12, 16, 29, 77

Linear boundary element, 256, 262
Linear finite element, 82, 116, 153, 190, 220
Local coordinate, 79, 102, 144, 153
Local numbering, 92

Magnetic scalar potential, 201, 277
Mass matrix

element, 120, 140, 210
overall, 120

Material anisotropy, 11, 80, 115
Mesh-free method, 5
Method of fundamental solutions, 5
Modified Bessel equation, 264
Modified Bessel function, 258
Modified Helmholtz equation, 260, 261
Multipole method, 272

Navier–Stokes equations, 3
Newton–Raphson method, 188, 201
Nodal function, 80, 98, 175, 221
Nodal numbering, 72, 92, 231
Nodal values, 79, 101, 177
Nodal variable, 74, 79, 90, 150, 154, 179, 229
Non-conforming element, 106, 113, 228
Non-linear, 7

differential operator, 7
equation, 7

Non-linear problems, 171, 179, 186
Norm, 219, 224
Numerical integration, 161, 284

Operator
non-self-adjoint, 181
self-adjoint, 10

Parabolic, 7
differential operator, 7, 28, 181
equation, 7, 276, 279

Patch test, 229
Permeability, 202, 277
Permittivity, 8, 72, 277
Petrov–Galerkin method, 177
Piecewise approximation, 1, 72, 75, 156, 177,

219, 227
Poisson’s equation, 4, 8, 24, 30, 44, 72, 91, 107,

156, 224, 230, 245, 258, 277
elastic analogy, 44
generalized, 46, 115

Poisson’s ratio, 44
Positive definite, 9, 10

differential operator, 9, 26, 28, 37, 97,
175, 218

matrix, 97, 101, 175, 233
Potential energy, 25, 48
Potential function, 74, 115
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Principle of virtual work, 1
Properly posed problem, 9, 49, 219, 249

Rayleigh–Ritz method, 4, 27, 35, 89,
172, 176

Reciprocal theorem, 244
Rectangular brick element, 118, 158, 160
Rectangular element, 102, 106, 144, 150,

225, 228
Residual, 12, 16, 177, 179
Rigid-body motion, 77, 84

Schwartz inequality, 222
Self-adjoint, 10, 26, 28, 176

differential operator, 10, 50, 218
Semi-bandwidth, 101, 116
Shape function, 80, 90, 144, 154

space and time, 179
Shape function matrix, 78, 79
Singular integral, 250
Somigliana’s identity, 244
Stability, 232, 234
Steady-state problem, 8, 28, 46, 279
Stiffness matrix, 2, 151, 181, 250, 272

banded, 84
element, 74, 83, 109
overall, 74, 84
positive definite, 101
reduced, 96, 101
reduced overall, 97
rigid body motion, 84
singular, 84
sparse, 84, 101
symmetric, 84, 101, 232

Strain, 44, 47
Strain energy, 44

Stress, 44, 47
Stress matrix, 75, 90

element, 80
Stress vector, 44
Superconvergence, 91, 224

Target element, 249, 258
Telegraphy equation, 201
Tetrahedral element, 119, 158, 161
Time-dependent problem, 48, 179, 232

variational principles which are not
extremal, 189

Torsion equation, 117, 229
Trial function, 13, 24, 27, 46, 50, 73,

150, 176, 223, 228
Triangle coordinates, 108
Triangular element, 76, 92, 107, 114, 145

axisymmetric, 118
boundary, 236
space–time element, 181

Up-wind approach, 3

Variational method, 4, 171, 223
Hamilton’s principle, 49
Reissner’s principle, 4
time-dependent problem, 48

Variational parameter, 36
Volume coordinates, 119

Wave equation, 8, 48, 189, 194, 278
Weierstrass approximation theorem, 76
Weighted residual method, 3, 13, 82, 179
Weighting function, 82, 176

Young’s modulus, 44
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